Malmö University Publications
Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Improving movie recommendations through social media matching
Malmö University, Faculty of Technology and Society (TS).
Malmö University, Faculty of Technology and Society (TS).
2019 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [sv]

Rekommendationssystem är idag väsentliga för att navigera den enorma mängd produkter tillgängliga via internet. Då social media i form av Twitter vid tidigare tillfällen använts för att generera filmrekommendationer har detta främst varit för att hantera cold-start, ett vanligt drabbande problem för collaborative-filtering. I detta arbete adresseras istället hur top-k rekommendationer påverkas vid integrering av social media data i rekommendationssystemet. För att svara på denna fråga har en prototyp av nytt slag utvecklats inom processmodellen för Design Science. Systemet rankar om top-k rekommendationer baserat på resultatet av social matchning där användares Tweets matchas med nyckelord för filmer genom latent semantic indexing (LSI) similarity. Prototypen evalueras genom experiment som adresserar funktionalitet, noggrannhet, konsekvens och prestanda. Resultatet visar att mätetalen NDCG och MAP för top-k rekommendationer förbättras med social matching jämfört med att enbart använda collaborative filtering.

Abstract [en]

Recommender systems are a crucial part of navigating the vast number of products on the internet. Social media, in the form of Twitter microblogs, has been previously used to produce movie recommendations, yet this has mainly been to solve cold-start, a common problem in collaborative filtering environments. This work addresses how top-k recommendations in a collaborative filtering environment are affected when augmented with social media data. To answer this question a novel prototype is developed following a design science process model. This system re-ranks top-k recommendations based on a social matching process where Tweets are matched with movie keywords through latent semantic indexing (LSI) similarity. The prototype is evaluated through experiments regarding functionality, accuracy, consistency, and performance. The results show that NDCG and MAP metrics of the top-k recommendations improve with social matching compared to only using the collaborative filtering algorithms.

Place, publisher, year, edition, pages
Malmö universitet/Teknik och samhälle , 2019. , p. 42
Keywords [en]
Twitter, Collaborative filtering, Recommender systems, LSI, Top k, Social-matching
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:mau:diva-20834Local ID: 29240OAI: oai:DiVA.org:mau-20834DiVA, id: diva2:1480716
Educational program
TS Systemutvecklare
Supervisors
Examiners
Available from: 2020-10-27 Created: 2020-10-27Bibliographically approved

Open Access in DiVA

fulltext(791 kB)99 downloads
File information
File name FULLTEXT01.pdfFile size 791 kBChecksum SHA-512
26b65c0d0ae96b7fe0069d36e7fceab8f5acd1adcfc8145460f59de19747de0651e12dc231c7a27d192f08f41f52ec66aeb9e7fdb79152388721c1c4651f4ea4
Type fulltextMimetype application/pdf

By organisation
Faculty of Technology and Society (TS)
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 99 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 101 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf