Malmö University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Comparative study of cancer detection models using deep learning
Malmö University, Faculty of Technology and Society (TS).
2020 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [sv]

Leukemi är en form av cancer som kan vara en dödlig sjukdom. För att rehabilitera och behandla sjukdomen krävs det en korrekt och tidig diagnostisering. För att minska väntetiden för testresultaten har de ordinära metoderna transformerats till automatiserade datorverktyg som kan analyser och diagnostisera symtom. I detta arbete, utfördes det en komparativ studie. Det man jämförde var två olika metoder som detekterar leukemia. Den ena metoden är en genetisk sekvenserings metod som är en binär klassificering och den andra metoden en bildbehandlings metod som är en fler-klassad klassificeringsmodell. Modellerna hade olika inmatningsvärden, däremot använde sig de båda av Convolutional neural network (CNN) som nätverksarkitektur och fördelade datavärdena med en 3-way cross-validation teknik. Utvärderings metoderna för att analysera resultaten är learning curves, confusion matrix och klassifikation rapport. Resultaten visade att den genetiska sekvenserings metoden hade fler antal värden som var korrekt förutsagda med 98 % noggrannhet. Den presterade bättre än bildbehandlings metoden som hade värde på 81% noggrannhet. Storlek på de olika datauppsättningar kan vara en orsak till algoritmernas olika testresultat.

Abstract [en]

Leukemia is a form of cancer that can be a fatal disease, and to rehabilitate and treat it requires a correct and early diagnosis. Standard methods have transformed into automated computer tools for analyzing, diagnosing, and predicting symptoms. In this work, a comparison study was performed by comparing two different leukemia detection methods. The methods were a genomic sequencing method, which is a binary classification model and a multi-class classification model, which was an images-processing method. The methods had different input values. However, both of them used a Convolutional neural network (CNN) as network architecture. They also split their datasets ​​using 3-way cross-validation. The evaluation methods for analyzing the results were learning curves, confusion matrix, and classification report. The results showed that the genome model had better performance and had several numbers of values ​​that were correctly predicted with a total accuracy of 98%. This value was compared to the image processing method results that have a value of 81% total accuracy. The size of the different data sets can be a cause of the different test results of the algorithms.

Place, publisher, year, edition, pages
Malmö universitet/Teknik och samhälle , 2020. , p. 48
Keywords [en]
Image recognition, Healthcare, Cancer detection, Genomic Sequencing, Deep learning
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:mau:diva-20468Local ID: 32148OAI: oai:DiVA.org:mau-20468DiVA, id: diva2:1480344
Educational program
TS Datateknik och mobil IT
Supervisors
Examiners
Available from: 2020-10-27 Created: 2020-10-27Bibliographically approved

Open Access in DiVA

fulltext(1616 kB)3648 downloads
File information
File name FULLTEXT01.pdfFile size 1616 kBChecksum SHA-512
5f2ccb2d10a333b90f6c5a8daec946dd1e31f9c8d9407d6906370e02ca55b3331ae4b37b719df63bb59f335deddebeef7b9aa646cb58cd7db49d8ebc12d9cca7
Type fulltextMimetype application/pdf

By organisation
Faculty of Technology and Society (TS)
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 3648 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 345 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf