Malmö University Publications
Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Implementation of Anomaly Detection on a Time-series Temperature Data set
Malmö University, Faculty of Technology and Society (TS).
Malmö University, Faculty of Technology and Society (TS).
2019 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [sv]

Aldrig har det varit lika aktuellt med hållbar teknologi som idag. Behovet av bättre miljöpåverkan inom alla områden har snabbt ökat och energikonsumtionen är ett av dem. En enkel lösning för automatisk kontroll av energikonsumtionen i smarta hem är genom mjukvara. Med dagens IoT teknologi och maskinlärningsmodeller utvecklas den mjukvarubaserade hållbara livsstilen allt mer. För att kontrollera ett hushålls energikonsumption måste plötsligt avvikande beteenden detekteras och regleras för att undvika onödig konsumption. Detta examensarbete använder en tidsserie av temperaturdata för att implementera detektering av anomalier. Fyra modeller implementerades och testades; en linjär regressionsmodell, Pandas EWM funktion, en EWMA modell och en PEWMA modell. Varje modell testades genom att använda dataset från nio olika lägenheter, från samma tidsperiod. Därefter bedömdes varje modell med avseende på Precision, Recall och F-measure, men även en ytterligare bedömning gjordes för linjär regression med R^2-score. Resultaten visar att baserat på noggrannheten hos varje modell överträffade PEWMA de övriga modellerna. EWMA modeller var något bättre än den linjära regressionsmodellen, följt av Pandas egna EWM modell.

Abstract [en]

Today's society has become more aware of its surroundings and the focus has shifted towards green technology. The need for better environmental impact in all areas is rapidly growing and energy consumption is one of them. A simple solution for automatically controlling the energy consumption of smart homes is through software. With today's IoT technology and machine learning models the movement towards software based ecoliving is growing. In order to control the energy consumption of a household, sudden abnormal behavior must be detected and adjusted to avoid unnecessary consumption. This thesis uses a time-series data set of temperature data for implementation of anomaly detection. Four models were implemented and tested; a Linear Regression model, Pandas EWM function, an exponentially weighted moving average (EWMA) model and finally a probabilistic exponentially weighted moving average (PEWMA) model. Each model was tested using data sets from nine different apartments, from the same time period. Then an evaluation of each model was conducted in terms of Precision, Recall and F-measure, as well as an additional evaluation for Linear Regression, using R^2 score. The results of this thesis show that in terms of accuracy, PEWMA outperformed the other models. The EWMA model was slightly better than the Linear Regression model, followed by the Pandas EWM model.

Place, publisher, year, edition, pages
Malmö universitet/Teknik och samhälle , 2019. , p. 47
Keywords [en]
machine learning, anomaly detection, linear regression, exponentially weighted moving average, EWMA, probabilistic exponentially weighted moving average, PEWMA, time-series data set
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:mau:diva-20375Local ID: 28784OAI: oai:DiVA.org:mau-20375DiVA, id: diva2:1480248
Educational program
TS Datateknik och mobil IT
Supervisors
Examiners
Available from: 2020-10-27 Created: 2020-10-27Bibliographically approved

Open Access in DiVA

fulltext(782 kB)2139 downloads
File information
File name FULLTEXT01.pdfFile size 782 kBChecksum SHA-512
b1e162795016ee09484c9541484c13f87f1f62eb22a0e176b888f3828c81266770630174b9e92a2c30b70c18415eea519be048667b014f68afdb53badc6038d8
Type fulltextMimetype application/pdf

By organisation
Faculty of Technology and Society (TS)
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 2139 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 396 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf