Malmö University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Empirisk undersökning av ML strategier vid prediktion av cykelflöden baserad på cykeldata och veckodagar
Malmö University, Faculty of Technology and Society (TS).
Malmö University, Faculty of Technology and Society (TS).
2019 (Swedish)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [sv]

Detta arbete fokuserar på prediktion av cykeltrafik under en månad på en given gata i Malmö med hjälp av maskininlärning. Algoritmen som används är Python-implementering av Stödvektormaskin (Support Vector Machine) från Scikit . Data som används är antalet cyklister/dag under 2006-2013 från en cykel-barometer som är placerad på Kaptensgatan i Malmö. Barometerns funktion är att räkna antalet cyklar som passerar samt registrera tiden. I vår studie undersöker vi hur precision av prediktionen av antalet cyklister varje dag under fyra veckor i oktober 2013, mätt med metoderna RMSE och MAPE, beror av valet av indata (cykeldata och angivelse av veckodag). Ett antal experiment med olika kombinationer av indata och representanter av veckodagar genomfördes. Resultaten visar att testet med störst indata-mängd och veckodagar, angivet som 1-7, gav bäst prediktion.

Abstract [en]

This work focuses on the prediction of bicycle traffic for a month on a given street in Malmö by means of machine learning. The algorithm used is the Python implementation of Support Vector Machine from Scikit. The data used is the number of cyclists / day during 2006-2013 from a cycle barometer placed on Kaptensgatan in Malmö. The function of the barometer is to count the number of cycles that pass and register the time. In our study we investigate how precision of the prediction of the number of cyclists each day for four weeks in October 2013, measured by the RMSE and MAPE methods, depends on the choice of input data (cycle data and the weekday indication). A number of experiments with different combinations of input data and representatives of weekdays were conducted. The results show that the test with the largest input amount and week days indicated as 1-7 gave the best prediction.

Place, publisher, year, edition, pages
Malmö universitet/Teknik och samhälle , 2019. , p. 44
Keywords [sv]
Machine Learning, Machine Learning
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:mau:diva-20168Local ID: 29041OAI: oai:DiVA.org:mau-20168DiVA, id: diva2:1480037
Educational program
TS Datateknik och mobil IT
Supervisors
Examiners
Available from: 2020-10-27 Created: 2020-10-27Bibliographically approved

Open Access in DiVA

fulltext(1239 kB)96 downloads
File information
File name FULLTEXT01.pdfFile size 1239 kBChecksum SHA-512
40bc3592b6a2722272ad14961e9e521fb229878d48ec5aa1482e57a2e104432e11f1b42b1d63d4e008575194670e26e82f22aefdbc9a4be7f46c3b38a6953478
Type fulltextMimetype application/pdf

By organisation
Faculty of Technology and Society (TS)
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 96 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 94 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf