Malmö University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Evaluating Interpretability in Machine Teaching
Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT).ORCID iD: 0000-0001-5676-1931
Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT).ORCID iD: 0000-0003-0998-6585
Malmö University, Faculty of Culture and Society (KS), School of Arts and Communication (K3).ORCID iD: 0000-0001-8836-7373
2020 (English)In: Highlights in Practical Applications of Agents, Multi-Agent Systems, and Trust-worthiness: The PAAMS Collection / [ed] Springer, Springer, 2020, Vol. 1233, p. 54-65Conference paper, Published paper (Other academic)
Abstract [en]

Building interpretable machine learning agents is a challenge that needs to be addressed to make the agents trustworthy and align the usage of the technology with human values. In this work, we focus on how to evaluate interpretability in a machine teaching setting, a settingthat involves a human domain expert as a teacher in relation to a machine learning agent. By using a prototype in a study, we discuss theinterpretability denition and show how interpretability can be evaluatedon a functional-, human- and application level. We end the paperby discussing open questions and suggestions on how our results can be transferable to other domains.

Place, publisher, year, edition, pages
Springer, 2020. Vol. 1233, p. 54-65
Series
Communications in Computer and Information Science, ISSN 1865-0929, E-ISSN 1865-0937 ; 1233
National Category
Human Computer Interaction
Research subject
Interaktionsdesign
Identifiers
URN: urn:nbn:se:mau:diva-18380DOI: 10.1007/978-3-030-51999-5_5Scopus ID: 2-s2.0-85088540310ISBN: 978-3-030-51998-8 (print)ISBN: 978-3-030-51999-5 (electronic)OAI: oai:DiVA.org:mau-18380DiVA, id: diva2:1470049
Conference
PAAMS: International Conference on Practical Applications of Agents and Multi-Agent Systems, 7-9 October 2020, L’Aquila, Italy
Available from: 2020-09-23 Created: 2020-09-23 Last updated: 2023-07-06Bibliographically approved
In thesis
1. Human In Command Machine Learning
Open this publication in new window or tab >>Human In Command Machine Learning
2021 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Machine Learning (ML) and Artificial Intelligence (AI) impact many aspects of human life, from recommending a significant other to assist the search for extraterrestrial life. The area develops rapidly and exiting unexplored design spaces are constantly laid bare. The focus in this work is one of these areas; ML systems where decisions concerning ML model training, usage and selection of target domain lay in the hands of domain experts. 

This work is then on ML systems that function as a tool that augments and/or enhance human capabilities. The approach presented is denoted Human In Command ML (HIC-ML) systems. To enquire into this research domain design experiments of varying fidelity were used. Two of these experiments focus on augmenting human capabilities and targets the domains commuting and sorting batteries. One experiment focuses on enhancing human capabilities by identifying similar hand-painted plates. The experiments are used as illustrative examples to explore settings where domain experts potentially can: independently train an ML model and in an iterative fashion, interact with it and interpret and understand its decisions. 

HIC-ML should be seen as a governance principle that focuses on adding value and meaning to users. In this work, concrete application areas are presented and discussed. To open up for designing ML-based products for the area an abstract model for HIC-ML is constructed and design guidelines are proposed. In addition, terminology and abstractions useful when designing for explicability are presented by imposing structure and rigidity derived from scientific explanations. Together, this opens up for a contextual shift in ML and makes new application areas probable, areas that naturally couples the usage of AI technology to human virtues and potentially, as a consequence, can result in a democratisation of the usage and knowledge concerning this powerful technology.

Place, publisher, year, edition, pages
Malmö: Malmö universitet, 2021. p. 136
Series
Studies in Computer Science ; 16
Keywords
Human-centered AI/ML, Explainable AI, Machine Learning, Human In the Loop ML
National Category
Human Computer Interaction Computer Engineering
Research subject
Interaktionsdesign
Identifiers
urn:nbn:se:mau:diva-42576 (URN)10.24834/isbn.9789178771875 (DOI)978-91-7877-186-8 (ISBN)978-91-7877-187-5 (ISBN)
Presentation
2021-06-17, 13:00 (English)
Supervisors
Available from: 2021-06-03 Created: 2021-06-02 Last updated: 2024-03-04Bibliographically approved
2. Neural networks in context: challenges and opportunities: a critical inquiry into prerequisites for user trust in decisions promoted by neural networks
Open this publication in new window or tab >>Neural networks in context: challenges and opportunities: a critical inquiry into prerequisites for user trust in decisions promoted by neural networks
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Artificial intelligence and machine learning (ML) in particular increasingly impact human life by creating value from collected data. This assetisation affects all aspectsof human life, from choosing a significant other to recommending a product for us to consume. This type of ML-based system thrives because it predicts human behaviour based on average case performance metrics (like accuracy). However, its usefulnessis more limited when it comes to being transparent about its internal knowledge representations for singular decisions, for example, it is not good at explaining why ithas suggested a particular decision in a specific context.The goal of this work is to let end users be in command of how ML systems are used and thereby combine the strengths of humans and machines – machines which can propose transparent decisions. Artificial neural networks are an interesting candidate for a setting of this type, given that this technology has been successful in building knowledge representations from raw data. A neural network can be trained by exposing it to data from the target domain. It can then internalise knowledge representations from the domain and perform contextual tasks. In these situations, the fragment of the actual world internalised in an ML system has to be contextualised by a human to beuseful and trustworthy in non-static settings.This setting is explored through the overarching research question: What challenges and opportunities can emerge when an end user uses neural networks in context to support singular decision-making? To address this question, Research through Design is used as the central methodology, as this research approach matches the openness of the research question. Through six design experiments, I explore and expand on challenges and opportunities in settings where singular contextual decisions matter. The initial design experiments focus on opportunities in settings that augment human cognitive abilities. Thereafter, the experiments explore challenges related to settings where neural networks can enhance human cognitive abilities. This part concerns approaches intended to explain promoted decisions.This work contributes in three ways: 1) exploring learning related to neural networks in context to put forward a core terminology for contextual decision-making using ML systems, wherein the terminology includes the generative notions of true-to-the-domain, concept, out-of-distribution and generalisation; 2) presenting a number of design guidelines; and 3) showing the need to align internal knowledge representations with concepts if neural networks are to produce explainable decisions. I also argue that training neural networks to generalise basic concepts like shapes and colours, concepts easily understandable by humans, is a path forward. This research direction leads towards neural network-based systems that can produce more complex explanations that build on basic generalisable concepts.

Abstract [sv]

Artificiell intelligens och i synnerhet Maskininlärning (ML) påverkar i hög grad människors liv genom de kan skapa monetärt värde från data. Denna produktifiering av insamlad data påverkar på många sätt våra liv, från val av partner till att rekommendera nästa produkt att konsumera. ML-baserade system fungerar väl i denna roll eftersom de kan förutsäga människors beteende baserat på genomsnittliga prestandamått, men deras användbarhet är mer begränsad i situationer där det är viktigt med transparens visavi de kunskapsrepresentationer ett enskilt beslut baseras på.

 Målet med detta arbete är att kombinera människors och maskiners styrkor via en tydlig maktrelation där en slutanvändare har kommandot. Denna maktrelation bygger på användning av ML-system som är transparenta med bakomliggande orsaker för ett föreslaget beslut. Artificiella neurala nätverk är ett intressant val av ML-teknik för denna uppgift eftersom de kan bygga interna kunskapsrepresentationer från rå data och därför tränas utan specialiserad ML kunskap. Detta innebär att ett neuralt nätverk kan tränas genom att exponeras för data från en måldomän och i denna process internalisera relevanta kunskapsrepresentationer. Därefter kan nätet presentera kontextuella förslag på beslut baserat på dessa representationer. I icke-statiska situationer behöver det fragment av den verkliga världen som internaliseras i ML-systemet kontextualiseras av en människa för att systemet skall vara användbart och tillförlitligt.

 I detta arbete utforskas det ovan beskrivna området via en övergripande forskningsfråga: Vilka utmaningar och möjligheter kan uppstå när en slutanvändare använder neurala nätverk som stöd för enstaka beslut i ett väldefinierat sammanhang?

 För att besvara forskningsfrågan ovan används metodologin forskning genom design, detta på grund av att den valda metodologin matchar öppenheten i forskningsfrågan. Genom sex designexperiment utforskas utmaningar och möjligheter i situationer där enskilda kontextuella beslut är viktiga. De initiala designexperimenten fokuserar främst på möjligheter i situationer där neurala nätverk presterar i paritet med människors kognitiva förmågor och de senare experimenten utforskar utmaningar i situationer där neurala nätverk överträffar människans kognitiva förmågor.  Den andra delen fokuserar främst på metoder som syftar till att förklara beslut föreslagna av det neurala nätverket.

 Detta arbete bidrar till existerande kunskap på tre sätt: (1) utforskande av lärande relaterat till neurala nätverk med målet att presentera en terminologi användbar för kontextuellt beslutsfattande understött av ML-system, den framtagna terminologin inkluderar generativa begrepp som: sann-i-relation-till-domänen, koncept, utanför-distributionen och generalisering, (2) ett antal designriktlinjer, (3) behovet av att justera interna kunskapsrepresentationer i neurala nätverk så att de överensstämmer med koncept vilket skulle kunna medföra att neurala nätverk kan producera förklaringsbara beslut. Jag föreslår även att en framkomlig forskningsstrategi är att träna neurala nätverk med utgångspunkt från grundläggande koncept, som former och färger. Denna strategi innebär att nätverken kan generalisera utifrån dessa generella koncept i olika domäner. Den föreslagna forskningsriktning syftar till att producera mer komplexa förklaringar från neurala nätverk baserat på grundläggande generaliserbara koncept.

Place, publisher, year, edition, pages
Malmö: Malmö University Press, 2023. p. 70
Series
Studies in Computer Science ; 22
Keywords
Explainable AI, Machine Learning, Neural Network, Concept, Generalisation, Out-of-Distribution, Förklaringsbar AI, Maskininlärning, Neurala Nätverk, Koncept, Generalisering, Utanför-distributionen
National Category
Computer Sciences
Identifiers
urn:nbn:se:mau:diva-58450 (URN)10.24834/isbn.9789178773503 (DOI)978-91-7877-351-0 (ISBN)978-91-7877-350-3 (ISBN)
Public defence
2023-04-13, Orkanen, D138 eller livestream, Nordenskiöldsgatan 10, Malmö, 14:00 (English)
Opponent
Supervisors
Note

Paper IV and VIII in dissertation as manuscript

Available from: 2023-03-17 Created: 2023-03-17 Last updated: 2024-02-29Bibliographically approved

Open Access in DiVA

fulltext(870 kB)170 downloads
File information
File name FULLTEXT01.pdfFile size 870 kBChecksum SHA-512
a6cbbedebfeacc5ab6e4eb1b4040381d6acf133350dbc5a8a11d399cae6adf03dbbe03dbf59bcb8d6f64df22b38ad1e8cd50d036d46de569ed8d8cf2ceeb845f
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Holmberg, LarsDavidsson, PaulLinde, Per

Search in DiVA

By author/editor
Holmberg, LarsDavidsson, PaulLinde, Per
By organisation
Department of Computer Science and Media Technology (DVMT)School of Arts and Communication (K3)
Human Computer Interaction

Search outside of DiVA

GoogleGoogle Scholar
Total: 176 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 745 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf