Open this publication in new window or tab >>2021 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]
The rapidly evolving Internet of Things (IoT) systems demands addressing new requirements. This particularly needs efficient deployment of IoT systems to meet the quality requirements such as latency, energy consumption, privacy, and bandwidth utilization. The increasing availability of computational resources close to the edge has prompted the idea of using these for distributed computing and storage, known as edge computing. Edge computing may help and complement cloud computing to facilitate deployment of IoT systems and improve their quality. However, deciding where to deploy the various application components is not a straightforward task, and IoT system designer should be supported for the decision.
To support the designers, in this thesis we focused on the system qualities, and aimed for three main contributions. First, by reviewing the literature, we identified the relevant and most used qualities and metrics. Moreover, to analyse how computer simulation can be used as a supporting tool, we investigated the edge computing simulators, and in particular the metrics they provide for modeling and analyzing IoT systems in edge computing. Finally, we introduced a method to represent how multiple qualities can be considered in the decision. In particular, we considered distributing Deep Neural Network layers as a use case and raked the deployment options by measuring the relevant metrics via simulation.
Place, publisher, year, edition, pages
Malmö: Malmö universitet, 2021. p. 141
Series
Studies in Computer Science ; 13
Keywords
Internet of Things, Edge computing, Decision Support, Quality Attrib-utes, Metrics, Simulation
National Category
Communication Systems Other Electrical Engineering, Electronic Engineering, Information Engineering Computer Systems
Identifiers
urn:nbn:se:mau:diva-37068 (URN)10.24834/isbn.9789178771592 (DOI)978-91-7877-158-5 (ISBN)978-91-7877-159-2 (ISBN)
Supervisors
Note
Note: The papers are not included in the fulltext online
2020-12-032020-12-022024-03-07Bibliographically approved