Malmö University Publications
Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Composition of plant leaf wax, phase behavior of major components and effects of hydration
Malmö högskola, Faculty of Health and Society (HS), Department of Biomedical Science (BMV).
Malmö högskola, Faculty of Health and Society (HS), Department of Biomedical Science (BMV).ORCID iD: 0000-0002-9852-5440
Show others and affiliations
2013 (English)In: Proceedings of the 10th International Symposium on Adjuvants for Agrochemicals (ISAA 2013), ISAA Society , 2013, p. 257-262Conference paper, Published paper (Other academic)
Abstract [en]

The aim of this project was to characterize thermotropic phase behavior and morphology of major wax components of a plant leaf cuticle in dry and hydrated conditions. The composition of the cuticular wax from adaxial leaves of the plant Clivia Miniata Regel was characterized by GC-MS. The analysis showed that the wax is dominated by aliphatic compounds, mainly alkanes (C22-C33) and alcohols (C16-C32). Based on this analysis a model wax was composed comprising 1-docosanol (C22H45OH) and dotriacontane (C32H66). The simplicity of the model allowed for a thorough physical-chemical analysis of the system. Differential Scanning Calorimetry (DSC) and Small Angle X-ray Diffraction (SAXD) were employed to map the phase behavior and morphology of the C22H45OH/C32H66/H2O system. In dry stateC22H45OH and C32H66 observe eutectic interaction with substantial changes in the melting temperatures. C32H66 transforms to a second crystalline phase just below the eutectic point.C32H66 do not interact with water but C22H45OH forms a hydrate with a conformational change in hydrocarbon chain packing. Long chain alcohols is a major component in cuticular wax of many plant species and their ability to form hydrates with less ordered chain conformation can add to the understanding of the nature and barrier function of the plant leaf cuticle.

Place, publisher, year, edition, pages
ISAA Society , 2013. p. 257-262
Keywords [en]
Wax, Cuticle, Phase behavior, DSC, SAXD
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:mau:diva-16603Local ID: 16402OAI: oai:DiVA.org:mau-16603DiVA, id: diva2:1420117
Conference
International Symposium on Adjuvants for Agrochemicals (ISAA), Brazil (2013)
Available from: 2020-03-30 Created: 2020-03-30 Last updated: 2022-06-27Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

http://events.isaa-online.org/page/251/lookback-on-isaa-2013.html

Authority records

Fagerström, AntonKocherbitov, VitalyEngblom, Johan

Search in DiVA

By author/editor
Fagerström, AntonKocherbitov, VitalyEngblom, Johan
By organisation
Department of Biomedical Science (BMV)
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 127 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf