Endosteal dental implants have been utilized as anchors for dental and orthopedic rehabilitations for decades with one of the highest treatment success rates in medicine. Such success is due to the phenomenon of osseointegration where after the implant surgical placement, bone healing results into an intimate contact between bone and implant surface. While osseointegration is an established phenomenon, the route which osseointegration occurs around endosteal implants is related to various implant design factors including surgical instrumentation and implant macro, micro, and nanometer scale geometry. In an implant system where void spaces (healing chambers) are present between the implant and bone immediately after placement, its inherent bone healing pathway results in unique opportunities to accelerate the osseointegration phenomenon at the short-term and its maintenance on the long-term through a haversian-like bone morphology and mechanical properties.