Malmö University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
GRASP2018-A Fortran 95 version of the General Relativistic Atomic Structure Package
Department Computer Science, University of British Columbia, 2366 Main Mall, Vancouver, BC V6T1Z4, Canada.
Institute of Theoretical Physics and Astronomy, Saulėtekio Av. 3, Vilnius LT, Vilnius, 10222, Lithuania.
Malmö University, Faculty of Technology and Society (TS), Department of Materials Science and Applied Mathematics (MTM).ORCID iD: 0000-0001-6818-9637
Instytut Fizyki imienia Mariana Smoluchowskiego, Uniwersytet Jagielloński, ul. prof. Stanisława Łojasiewicza 11, Krakó,w, 30-348, Poland.
2019 (English)In: Computer Physics Communications, ISSN 0010-4655, E-ISSN 1879-2944, Vol. 237, p. 184-187Article in journal (Refereed)
Abstract [en]

The present GRASP2018 is an updated Fortran 95 version of the recommended block versions of programs from GRASP2K Version 1_1 for large-scale calculations Jonsson et al. (2013). MPI programs are included so that all major tasks can be executed using parallel computers. Tools have been added that simplify the generation of configuration state function expansions for the multireference single- and double computational model. Names of programs have been changed to accurately reflect the task performed by the code. Modifications to the relativistic self-consistent field program have been made that, in some instances, greatly reduce the number of iterations needed for determining the requested eigenvalues and the memory required. Changes have been made to the relativistic configuration interaction program to substantially cut down on the time for constructing the Hamiltonian matrix for configuration state function expansions based on large ,orbital sets. In the case of a finite nucleus the grid points have been changed so that the first non-zero point is Z-dependent as for the point nucleus. A number of tools have been developed to generate LaTeX tables of eigenvalue composition, energies, transition data and lifetimes. Tools for plotting and analyzing computed properties along an iso-electronic sequence have also been added. A number of minor errors have been corrected. A detailed manual is included that describes different aspects of the package as well as the steps needed in order to produce reliable results. Program summary Program Title: GRAsp2018 Program Files doi: http://dx.doi.org/10.17632/x574wpp2vg.1 Licensing provisions: MIT license Programming language: Fortran 95. Nature of problem: Prediction of atomic properties - atomic energy levels, isotope shifts, oscillator strengths, radiative decay rates, hyperfine structure parameters, specific mass shift parameters, Zeeman effects - using a multiconfiguration Dirac-Hartree-Fock approach. Solution method: The computational method is the same as in the previous GRASP2K [1,2] version except that only the latest recommended versions of certain routines are included. Restrictions: All calculations are for bound state solutions. Instead of relying on packing algorithms for specifying arguments of arrays of integrals, orbitals are designated by a "short integer" requiring one byte of memory for a maximum of 127 orbitals. The tables of reduced coefficients of fractional parentage used in this version are limited to sub-shells with j <= 9/2 [3]; occupied sub-shells with j > 9/2 are, therefore, restricted to a maximum of two electrons. Some other parameters, such as the maximum number of orbitals are determined in a parameter_def _M.f 90 file that can be modified prior to compile time. Unusual features: Parallel versions are available for several applications. References [1] P. Jonsson, X. He, C. Froese Fischer, and I. P. Grant, Comput. Phys. Commun. 176, 597 (2007). [2] P. Jonsson, G. Gaigalas, J. Bieron, C. Froese Fischer, and I. P. Grant, Comput. Phys. Commun. 184, 2197 (2013). [3] G. Gaigalas, S. Fritzsche, Z. Rudzikas, Atomic Data and Nuclear Data Tables 76, 235 (2000). (C) 2018 Elsevier B.V. All rights reserved.

Place, publisher, year, edition, pages
Elsevier, 2019. Vol. 237, p. 184-187
Keywords [en]
Atomic structure calculations, Configuration interaction, Correlation, Energy levels, Isotope shift, Multiconfiguration Dirac-Hartree-Fock, Relativistic effects in atoms, Transition probabilities
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:mau:diva-15979DOI: 10.1016/j.cpc.2018.10.032ISI: 000459366400016Scopus ID: 2-s2.0-85057291022Local ID: 29442OAI: oai:DiVA.org:mau-15979DiVA, id: diva2:1419501
Available from: 2020-03-30 Created: 2020-03-30 Last updated: 2024-06-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Jönsson, Per

Search in DiVA

By author/editor
Jönsson, Per
By organisation
Department of Materials Science and Applied Mathematics (MTM)
In the same journal
Computer Physics Communications
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 65 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf