Malmö University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Using QCM-D to study the adhesion of human gingival fibroblasts on implant surfaces
Malmö högskola, Faculty of Odontology (OD).
Show others and affiliations
2015 (English)In: Journal of Biomedical Materials Research. Part A, ISSN 1549-3296, E-ISSN 1552-4965, Vol. 103, no 10, p. 3139-3147Article in journal (Refereed)
Abstract [en]

Sealing the soft tissue-implant interface is one of the key issues in preventing transcutaneous implant-associated infections. A promising surface modification for improving osseointegration and possibly soft tissue integration is to coat the implant surface with hydroxyapatite (HA) nanoparticles. When new implant materials are developed, their ability to facilitate cell attachment and spreading are commonly investigated in vitro to establish their potential for good in vivo performance. However, commonly used techniques, such as microscopy methods, are time consuming, invasive, and subjective. This is the first study using quartz crystal microbalance with dissipation monitoring, where the real-time adhesion of biopsy-derived human gingival fibroblasts onto titanium and nanostructured HA was investigated. Experiments were performed for at least 16 h, and we found that cellular attachment and spreading kinetics can be followed in situ by observing the change in dissipation and frequency with time. Interestingly, a correlation between cell coverage and the magnitude of dissipation shift reached at the end of the experiment was found, but no such trend was observed for the frequency. Furthermore, the level of cell coverage was found to influence the cellular attachment and spreading behavior. No difference in cell response to the two surface types, Ti and nanostructured HA, was found. (c) 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 3139-3147, 2015.

Place, publisher, year, edition, pages
John Wiley & Sons, 2015. Vol. 103, no 10, p. 3139-3147
Keywords [en]
QCM-D, gingival fibroblasts, nanomaterials, hydroxyapatite, titanium
National Category
Dentistry
Identifiers
URN: urn:nbn:se:mau:diva-15879DOI: 10.1002/jbm.a.35458ISI: 000360501300003PubMedID: 25779215Scopus ID: 2-s2.0-84940434489Local ID: 20061OAI: oai:DiVA.org:mau-15879DiVA, id: diva2:1419401
Available from: 2020-03-30 Created: 2020-03-30 Last updated: 2024-02-05Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Wennerberg, Ann

Search in DiVA

By author/editor
Wennerberg, Ann
By organisation
Faculty of Odontology (OD)
In the same journal
Journal of Biomedical Materials Research. Part A
Dentistry

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 19 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf