Open this publication in new window or tab >>2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [sv]
Då njurarna slutar fungera produceras ingen urin, och avfallsprodukterna stannar kvar i blodet. Detta tillstånd kallas uremi (”urin i blodet”) och leder till döden om det inte behandlas. Det finns två artificiella sätt att rena blodet på, hemodialys och peritonealdialys. I peritonealdialys fylls bukhålan med dialysvätska, som drar ut slaggprodukter och överflödigt vatten från blodet, genom bukhinnan (peritoneum). För att kunna fylla och tömma buken på dialysvätska behövs en kateter (slang), som opereras in genom bukväggen. Om bakterier, till exempel från huden, kommer in i bukhålan kan de fästa till kateterytan och bilda en biofilm. Biofilmer kan ge upphov till infektioner i bukhålan som leder till bukhinneinflammationer, vilket kan vara mycket smärtsamt. För att ge patienterna en bättre livskvalitet och minska sjukvårdskostnaderna är det önskvärt att reducera antalet bukhinneinflammationer. Syftet med vårt arbete har varit att få fram kunskap som bidrar till en bättre förståelse av biofilm-relaterade infektioner i buken. Vi studerade 15 katetrar uttagna från patienter som fick en ny njure (och därmed inte hade några infektioner) och 2 som var uttagna på grund av infektioner. Att inte ha några symptom på infektion betydde dock inte att katetern var fri från bakterier, och på 12 av dessa 15 katetrar hittade vi bakterier. Mängden bakterier var dock ganska liten och det verkade som om bakterierna och immunförsvaret hade uppnått en balans, där de fungerade tillsammans. De vanligaste bakterierna som hittades var hudbakterier, som i normala fall är harmlösa när de förekommer på huden. En av dessa bakterier var Staphylococcus epidermidis, och denna studerade vi vidare, tillsammans med en bakterie kallad Pseudomonas aeruginosa. Pseudomonas aeruginosa hittas normalt inte hos människor och är inte farlig för friska individer, men om immunförsvaret är nedsatt kan den ta chansen och orsaka infektioner, ofta i samband med implantat eller lungsjukdomen cystisk fibros. När vi odlade Staphylococcus epidermidis och Pseudomonas aeruginosa tillsammans i en biofilm upptäckte vi något intressant, nämligen att Pseudomonas aeruginosa tog över och att Staphylococcus epidermidis försvann från ytan. Detta upptäckte vi senare berodde på en substans som Pseudomonas aeruginosa producerade och placerade utanför själva cellen, dvs. en extracellulär produkt. Extracellulära produkter kan till exempel vara det socker-rika slem som omger bakterierna i biofilmen och skyddar dem mot kroppens immunförsvar, eller enzymer som bryter ned näringsämnen i omgivningen så att bakteriecellen kan ta upp det. När vi studerade de extracellulära produkterna närmare kunde vi isolera en fraktion som var rik på polysackarider, dvs. socker, och som fick Staphylococcus epidermidis att lossna från ytor. Dessutom verkade den socker-rika lösningen kunna förhindra inbindning av serumproteiner, vilka i sin tur påverkar den kommande infästningen av bakterier. Substansen är inte identifierad än, men skulle alltså kunna vara en typ av socker. I framtiden vill vi rena fram substansen och identifiera den, för att förhoppningsvis kunna använda den för att förhindra biofilmbildning på peritonealdialys-katetrar och därmed minska antalet infektioner hos peritonealdialys-patienter.
Abstract [en]
When the kidneys are failing the blood needs to be purified artificially. This can be done using peritoneal dialysis, in which a catheter is surgically inserted into the peritoneal cavity, through the abdominal wall, and used to infuse or withdraw dialysis fluid. When handling the catheter, touch contamination may occur and this can result in bacterial access to the peritoneal cavity, formation of biofilms and subsequent infections. Peritonitis, an often very painful inflammation of the peritoneum, is the major cause of morbidity in peritoneal dialysis patients and often leads to hospitalisation during treatment. Thus, the benefits of reducing the number on infections would be huge, with better quality of life for the patients and a reduction in costs for society. The aim of this thesis was to study bacterial colonisation on catheters from peritoneal dialysis patients as well as to study biofilm formation and microbial interactions on catheters in vitro. In a clinical study we investigated peritoneal dialysis catheters removed from patients due to renal transplantation (15 catheters) or infections (2 catheters). Bacterial colonisation was detected on 14 of the 17 catheters, as seen using confocal laser scanning microscopy or microbiological cultures, although the bacterial load was rather low. The most common species found on the catheters were Staphylococcus epidermidis and Propionibacterium acnes, both of which are low-virulent, commensal skin bacteria. Although usually low-virulent, S. epidermidis is the most common cause of medicaldevice related infections, and can cause persistent infections that are hard to eradicate. Due to its common presence in peritoneal dialysis catheter-related infections, S. epidermidis was further studied, together with another common opportunistic pathogen, Pseudomonas aeruginosa, often associated with more severe peritonitis cases which require catheter removal. These bacteria were cultured together and, interestingly, we found the number of S. epidermidis cells constantly declined compared to the P. aeruginosa cells, even when they were originally present in equal amounts, suggesting that P. aeruginosa dispersed the S. epidermidis biofilms. This dispersal effect of P. aeruginosa on S. epidermidis biofilms was seen for clinical and laboratory strains of both species. When S. epidermidis biofilms were exposed to cell-free growth medium of P. aeruginosa biofilms, the same effect could be seen, demonstrating that it was due to extracellular substance(s). Several extracellular substances of P. aeruginosa were investigated for their dispersal effect, including proteases, a quorum sensing-related homoserine lactone, the toxin pyocyanin and polysaccharides. For various reasons, all were excluded as the potentially active substance except the polysaccharides. This result was further supported when the cell-free growth medium of P. aeruginosa was fractionated and studied for S. epidermidis dispersal effect. The material with the greatest effect on S. epidermidis was a fraction rich in polysaccharides as shown by PAS staining. This pool contained no detectable mannose or galactose residues, and may correspond to the glucose-rich polysaccharide product of the pel gene cluster. Other fractions, including a galactose- and mannose-rich polysaccharide possibly corresponding to the psl gene product as well as one that was protein-rich were also active but to a lesser extent. Other bacterial polysaccharides have exhibited antibacterial effects, probably due to altered cell integrity, and possibly the potential P. aeruginosa polysaccharide might function in a similar way. In addition to functioning as a dispersal agent of established biofilms, the P. aeruginosa supernatant also seemed to inhibit biofilm formation by preventing adsorption of proteins to the catheter surface. In the future, identification of the substances responsible for these effects would allow them to be used in new strategies to prevent formation or eradicate biofilms from peritoneal dialysis catheters, thus reducing the number of infections.
Place, publisher, year, edition, pages
Malmö University, Faculty of Odontology, Department of Oral Biology, 2011. p. 101
Series
Doctoral Dissertation in Odontology
Keywords
Peritoneal dialysis, Biofilm
National Category
Microbiology in the medical area
Identifiers
urn:nbn:se:mau:diva-7698 (URN)11561 (Local ID)978-91-7104-123-4 (ISBN)11561 (Archive number)11561 (OAI)
Note
Note: The papers are not included in the fulltext online.
Paper I and IV in dissertation as manuscript. Paper I with title "Occurrence of bacteria on catheters in patients undergoing peritoneal dialysis".
2020-02-282020-02-282024-03-05Bibliographically approved