Malmö University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Efficacy of Humanized Mesenchymal Stem Cell Cultures for Bone Tissue Engineering: A Systematic Review with a Focus on Platelet Derivatives
Malmö högskola, Faculty of Odontology (OD).ORCID iD: 0000-0001-8161-3754
Show others and affiliations
2017 (English)In: Tissue engineering. Part B, Reviews, ISSN 1937-3368, E-ISSN 1937-3376, Vol. 23, no 6, p. 552-569Article in journal (Refereed)
Abstract [en]

Fetal bovine serum (FBS) is the most commonly used supplement for ex vivo expansion of human mesenchymal stem cells (hMSCs) for bone tissue engineering applications. However, from a clinical standpoint, it is important to substitute animal-derived products according to current good manufacturing practice (cGMP) guidelines. Humanized alternatives to FBS include three categories of products: human serum (HS), human platelet derivatives (HPDs)-including platelet lysate (PL) or platelet releasate (PR), produced by freeze/thawing or chemical activation of platelet concentrates, respectively, and chemically defined media (serum-free) (CDM). In this systematic literature review, the in vitro and in vivo osteogenic potential of hMSCs expanded in humanized (HS-, HPD-, or CDM-supplemented) media versus hMSCs expanded in FBS-supplemented media, was compared. In addition, PL and PR were compared in terms of their growth factor (GF)/cytokine-content and cell-culture efficacy. When using either 10-20% autologous or pooled HS, 3-10% pooled HPDs or CDM supplemented with GFs, in comparison with 10-20% FBS, a majority of studies reported similar or superior in vitro proliferation and osteogenic differentiation, and in vivo bone formation in ectopic or orthotopic rodent models. Moreover, a trend for higher GF content was observed in PL versus PR, although evidence for cell culture efficacy is limited. In summary, humanized supplements seem at least equally effective as FBS for hMSC expansion and osteogenic differentiation. Although pooled HPDs appear to be the most favorable supplement for large-scale hMSC expansion, further efforts are needed to standardize the preparation and composition of these products in compliance with cGMP standards.

Place, publisher, year, edition, pages
Mary Ann Liebert, 2017. Vol. 23, no 6, p. 552-569
Keywords [en]
good manufacturing practices, human serum, mesenchymal stem cells, platelet lysate, platelet releasate, platelet-rich plasma, serum-free media
National Category
Dentistry
Identifiers
URN: urn:nbn:se:mau:diva-15814DOI: 10.1089/ten.teb.2017.0093ISI: 000417635200005PubMedID: 28610481Local ID: 23459OAI: oai:DiVA.org:mau-15814DiVA, id: diva2:1419336
Available from: 2020-03-30 Created: 2020-03-30 Last updated: 2022-06-27Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records

Stavropoulos, Andreas

Search in DiVA

By author/editor
Stavropoulos, Andreas
By organisation
Faculty of Odontology (OD)
In the same journal
Tissue engineering. Part B, Reviews
Dentistry

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 12 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf