Malmö University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A novel technique for tailored surface modification of dental implants: a step wise approach based on plasma immersion ion implantation
Show others and affiliations
2013 (English)In: Clinical Oral Implants Research, ISSN 0905-7161, E-ISSN 1600-0501, Vol. 24, no 4, p. 461-467Article in journal (Refereed)
Abstract [en]

OBJECTIVES: A novel technique based on plasma immersion ion implantation (PIII) is presented to modify titanium implant surfaces. MATERIALS AND METHODS: Initially, the implants are cleaned with argon to remove contaminants and the nanostructures are created by the bombardment of the surface with a mix of noble gases. Desired crystal structure of the titanium is obtained by the implantation of oxygen on the contaminant-free surface with particular nanostructures. RESULTS: In this study, turned implants modified by PIII revealed a high density of rutile-TiO2 nanostructures. Turned implants used as control revealed mainly microstructures and amorphous crystal structure. Surface roughness values were similar at the microscale for both turned and turned + PIII implants. Bone response was evaluated by removal torque tests of implants placed in the rabbit tibia and femur. After 4 weeks of healing, turned + PIII demonstrated higher removal torque values (P = 0.001) compared to turned implants. CONCLUSIONS: The presence of rutile-TiO2 nanostructures may explain the improved bone formation to turned + PIII implants.

Place, publisher, year, edition, pages
John Wiley & Sons, 2013. Vol. 24, no 4, p. 461-467
National Category
Dentistry
Identifiers
URN: urn:nbn:se:mau:diva-15722DOI: 10.1111/j.1600-0501.2011.02352.xISI: 000315965700015PubMedID: 22168513Scopus ID: 2-s2.0-84874761434Local ID: 16756OAI: oai:DiVA.org:mau-15722DiVA, id: diva2:1419244
Available from: 2020-03-30 Created: 2020-03-30 Last updated: 2024-02-05Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Albrektsson, TomasWennerberg, Ann

Search in DiVA

By author/editor
Albrektsson, TomasWennerberg, Ann
By organisation
Faculty of Odontology (OD)
In the same journal
Clinical Oral Implants Research
Dentistry

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 18 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf