Malmö University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Bone reaction to nano hydroxyapatite modified titanium implants placed in a gap healing model
Malmö högskola, Faculty of Odontology (OD).
Show others and affiliations
2008 (English)In: Journal of Biomedical Materials Research. Part A, ISSN 1549-3296, E-ISSN 1552-4965, Vol. 87, no 3, p. 624-631Article in journal (Refereed)
Abstract [en]

Nanohydroxyapatite materials show similar chemistry to the bone apatite and depending on the underlying topography and the method of preparation, the nanohydroxyapatite may simulate the specific arrangement of the crystals in bone. Hydroxyapatite (HA) and other CaP materials have been indicated in cases in which the optimal surgical fit is not achievable during surgery, and the HA surface properties may enhance bone filling of the defect area. In this study, very smooth electropolished titanium implants were used as substrata for nano-HA surface modification and as control. One of each implant (control and nano HA) was placed in the rabbit tibia in a surgical site 0.7 mm wider than the implant diameter, resulting in a gap of 0.35 mm on each implant side. Implant stability was ensured by a fixating plate fastened with two side screws. Topographical evaluation performed with an optical interferometer revealed the absence of microstructures on both implants and higher resolution evaluation with AFM showed similar nanoroughness parameters. Surface pores detected on the AFM measurements had similar diameter, depth, and surface porosity (%). Histological evaluation demonstrated similar bone formation for the nano HA and electropolished implants after 4 weeks of healing. These results do not support that nano-HA chemistry and nanotopography will enhance bone formation when placed in a gap-healing model. The very smooth surface may have prevented optimal activity of the material and future studies may evaluate the synergic effects of the surface chemistry, micro, and nanotopography, establishing the optimal parameters for each of them.

Place, publisher, year, edition, pages
2008. Vol. 87, no 3, p. 624-631
National Category
Dentistry
Identifiers
URN: urn:nbn:se:mau:diva-15720DOI: 10.1002/jbm.a.31736Local ID: 6943OAI: oai:DiVA.org:mau-15720DiVA, id: diva2:1419242
Available from: 2020-03-30 Created: 2020-03-30 Last updated: 2022-06-27Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Albrektsson, TomasWennerberg, Ann

Search in DiVA

By author/editor
Albrektsson, TomasWennerberg, Ann
By organisation
Faculty of Odontology (OD)
In the same journal
Journal of Biomedical Materials Research. Part A
Dentistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 9 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf