Malmö University Publications
Planned maintenance
A system upgrade is planned for 13/12-2023, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Spontaneously formed nanostructures on titanium surfaces
Malmö högskola, Faculty of Odontology (OD).
Malmö högskola, Faculty of Odontology (OD).
2013 (English)In: Clinical Oral Implants Research, ISSN 0905-7161, E-ISSN 1600-0501, Vol. 24, no 2, p. 203-209Article in journal (Refereed) Published
Abstract [en]

OBJECTIVES: The aim was to investigate the evolution of nanostructures on the SLActive surface, as a function of time, storage conditions, material dependence and to identify the step in which the reorganization of the outermost titanium oxide layer into well defined nanostructures takes place. MATERIAL AND METHODS: Titanium grade 2 discs were surface modified in seven different modes; (1) SLA (sand blasted, large grit, acid etched) protocol. (2) SLActive protocol (SLA stored in 0.9% NaCl solution), (3) SLActive, but stored in water instead of 0.9% NaCl solution, (4) pmod SLA: SLA discs subjected to oxygen plasma cleaning and stored in 0.9% NaCl solution, (5) SLAnano: SLActive discs aged for several months and then dried, (6) Mod A: same etching procedure and storage as for SLActive, but no sand blasting prior to etching, (7) pmod P: the discs were polished, oxygen plasma cleaned and stored in 0.9% NaCl solution. In addition TiZr alloy discs were prepared like the Ti SLActive samples. The surfaces were evaluated with SEM, interferometry, contact angle measurements and XPS. RESULTS: The samples stored dry were hydrophobic whereas the discs stored in liquid were hydrophilic. The evolution of nanostructures took 2 weeks, thereafter they were stable over time. The nanostructures occured after storage both in water and NaCl solution. Nanostructures were formed on Ti and TiZr although the morphology and distribution was quite different between the two materials. CONCLUSIONS: Acid etching in conjunction with storage in aqueous solution is responsible for the reorganization of the outermost titanium oxide layer into well defined nanostructures.

Place, publisher, year, edition, pages
John Wiley & Sons, 2013. Vol. 24, no 2, p. 203-209
Keywords [en]
evolution, nanostructures, SLA, SLActive
National Category
Dentistry
Identifiers
URN: urn:nbn:se:mau:diva-15488DOI: 10.1111/j.1600-0501.2012.02429.xISI: 000313834500012Local ID: 16758OAI: oai:DiVA.org:mau-15488DiVA, id: diva2:1419009
Available from: 2020-03-30 Created: 2020-03-30 Last updated: 2022-06-27Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Wennerberg, Ann

Search in DiVA

By author/editor
Wennerberg, Ann
By organisation
Faculty of Odontology (OD)
In the same journal
Clinical Oral Implants Research
Dentistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 11 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf