Malmö University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Affinity states of biocides determine bioavailability and release rates in marine paints
Show others and affiliations
2015 (English)In: Biofouling (Print), ISSN 0892-7014, E-ISSN 1029-2454, Vol. 31, no 2, p. 201-210Article in journal (Refereed)
Abstract [en]

A challenge for the next generation marine antifouling (AF) paints is to deliver minimum amounts of biocides to the environment. The candidate AF compound medetomidine is here shown to be released at very low concentrations, ie ng ml(-1) day(-1). Moreover, the release rate of medetomidine differs substantially depending on the formulation of the paint, while inhibition of barnacle settlement is independent of release to the ambient water, ie the paint with the lowest release rate was the most effective in impeding barnacle colonisation. This highlights the critical role of chemical interactions between biocide, paint carrier and the solid/aqueous interface for release rate and AF performance. The results are discussed in the light of differential affinity states of the biocide, predicting AF activity in terms of a high surface affinity and preserved bioavailability. This may offer a general framework for the design of low-release paint systems using biocides for protection against biofouling on marine surfaces.

Place, publisher, year, edition, pages
Taylor & Francis, 2015. Vol. 31, no 2, p. 201-210
Keywords [en]
antifouling biocides, release, suface adsorption, barnacle, ellipsometry, RP-HPLC
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:mau:diva-15382DOI: 10.1080/08927014.2015.1012639ISI: 000353565900007PubMedID: 25775096Scopus ID: 2-s2.0-84926162171Local ID: 19163OAI: oai:DiVA.org:mau-15382DiVA, id: diva2:1418903
Available from: 2020-03-30 Created: 2020-03-30 Last updated: 2024-02-05Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Lindh, LiselottArnebrant, Thomas

Search in DiVA

By author/editor
Lindh, LiselottArnebrant, Thomas
By organisation
Faculty of Odontology (OD)Faculty of Health and Society (HS)
In the same journal
Biofouling (Print)
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 32 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf