BACKGROUND AND OBJECTIVE: The antimicrobial peptide LL-37 is expressed in periodontal tissue, and variations in LL-37 levels have been associated with periodontal disease. The effects of LL-37 on periodontal ligament cell function have not been described before. Here, we assess anti-inflammatory properties of LL-37 and investigate the effects of LL-37 on cell differentiation, cell proliferation and apoptosis in human periodontal ligament cells. MATERIAL AND METHODS: Periodontal ligament cells were obtained from teeth extracted for orthodontic reasons. Cytokine (interleukin-6) and chemokine (monocyte chemoattractant protein-1) expression was determined by quantitative PCR, cell differentiation by alkaline phosphatase activity, cell proliferation by counting cells in a Bürker chamber, DNA synthesis by incorporation of radiolabeled thymidine and apoptosis by cell morphology and activated caspase 3 quantities. RESULTS: Treatment with 0.1 and 1 μm of LL-37 totally reversed lipopolysaccharide-induced monocyte chemoattractant protein-1 expression and suppressed lipopolysaccharide-induced interleukin-6 expression by 50-70%. LL-37 had no effect on alkaline phosphatase activity. Incubation with 8 μm LL-37 strongly reduced cell number. DNA synthesis was attenuated by about 90% in response to 8 μm LL-37, confirming its antiproliferative effect. Cell morphology was altered in an apoptosis-like fashion in cells treated with 8 μm LL-37. Furthermore, the quantity of activated caspase 3 was increased in cells treated with 1 and 8 μm of LL-37, suggesting apoptosis. CONCLUSION: LL-37 strongly attenuates lipopolysaccharide-induced cytokine and chemokine expression and, in high concentrations, reduces cell proliferation through inhibition of DNA synthesis and by promoting apoptosis in human periodontal ligament cells.