Malmö University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effects of surfactants and thermodynamic activity of model active ingredient on transport over plant leaf cuticle
Malmö högskola, Faculty of Health and Society (HS), Department of Biomedical Science (BMV).
Malmö högskola, Faculty of Health and Society (HS), Department of Biomedical Science (BMV).ORCID iD: 0000-0002-9852-5440
Malmö högskola, Faculty of Health and Society (HS), Department of Biomedical Science (BMV).ORCID iD: 0000-0003-0304-7528
Show others and affiliations
2013 (English)In: Colloids and Surfaces B: Biointerfaces, ISSN 0927-7765, E-ISSN 1873-4367, Vol. 103, p. 572-579Article in journal (Refereed)
Abstract [en]

The main objective of this study was to investigate the mechanism of molecular transport across the cuticle of Clivia leaves. In vitro diffusion methodology was used to investigate the transport of a systemic fungicide, tebuconazole, over a model silicone membrane, enzymatically isolated cuticle membranes, and dermatomed leaves. It was shown that dermatomed leaves may replace enzymatically isolated cuticles. Furthermore, the effects of two surfactants, C10EO7 and C8G1.6, on the fungicide transport were investigated. Tebuconazole cuticle permeation was described using Fick's first law of diffusion, expressed by the thermodynamic activity of the solute in the membrane. A new method for calculation of diffusion coefficients in the membrane is proposed. To access the thermodynamic activity of the fungicide in the membranes, sorption isotherms of tebuconazole in the membrane materials studied were recorded. The thermodynamic activity of the fungicide in aqueous solutions was calculated from solubility data. For that purpose, the effect of surfactants on tebuconazole solubility was studied. The results show that addition of surfactants allows for higher concentrations of tebuconazole available for penetration. Nonetheless, at a fixed fungicide thermodynamic activity, all formulations produced the same flux over the silicone membrane independently on the fungicide concentration. This shows that the driving force across non-responding membranes is the gradient of thermodynamic activity, rather than the gradient of the fungicide concentration. In case of leaves, surfactants induced the same quantitative increase in both flux and diffusion coefficient of solute in the cuticle, while the cuticle-water partition coefficient was unaffected.

Place, publisher, year, edition, pages
Elsevier, 2013. Vol. 103, p. 572-579
Keywords [en]
adjuvant, surfactant, cuticle, tebuconazole, diffusion, clivia miniata regel leaf
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:mau:diva-15241DOI: 10.1016/j.colsurfb.2012.11.011ISI: 000315127000076PubMedID: 23261582Scopus ID: 2-s2.0-84871160449Local ID: 14792OAI: oai:DiVA.org:mau-15241DiVA, id: diva2:1418762
Available from: 2020-03-30 Created: 2020-03-30 Last updated: 2024-02-05Bibliographically approved
In thesis
1. Effects of surfactant adjuvants on plant leaf cuticle barrier properties
Open this publication in new window or tab >>Effects of surfactant adjuvants on plant leaf cuticle barrier properties
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [sv]

I avhandlingen undersöks växelverkan mellan det yttersta lagret på växters blad (cutikeln), aktiva substanser, och ämnen som tillsätts för att öka bekämpningsmedlens effekt, i detta fall vissa former av tensider. Barriären som hindrar upptag av främmande ämnen i växten sitter i cutikeln. Det är väl känt att tensider förstärker effekten av aktiva substanser. Kunskapen är dock liten om de mekanismer som underlättar upptaget i växtblad. Det övergripande målet i avhandlingen är att öka kunskapen om hur dessa mekanismer verkar. Att klargöra vilka effekter tensider har på cutikeln och hur dessa möjliggör ett ökat upptag av aktiva substanser. Ytterligare ett mål är att bidra till en mer ekologiskt hållbar användning och förnuftig applicering av bekämpningsmedel inom jordbrukssektorn. Det senare av dessa två mål kan uppnås genom att använda den mest effektiva tensiden för respektive bekämpningsmedel, samt det mest effektiva bekämpningsmedlet för respektive växtsort för att på så vis minimera mängden bekämpningsmedel. Men optimering kräver givetvis förståelse. Det övergripande målet har uppnåtts genom kartläggning av vad som sker i växelverkan mellan tensid, vatten och växtblad. Beståndsdelarna som upprätthåller bladets barriäregenskaper beskrivs, samt hur deras smältbeteende och strukturella egenskaper förändras då vatten tillförs och då tensider är närvarande. En ny modell av vaxbarriären i cutikeln etableras och kartläggs. Modellen används till att undersöka de mjukgörande effekterna tensider och vatten har på cutikeln. Hur tensider ordnar sig i en vattenlösning och hur ordningen förändras när vatten avdunstar beskrivs i avhandlingen. Vidare kartläggs hur tensider absorberas i cutikeln och vilka strukturer som påverkas där. Drivkraften för upptag av bekämpningsmedel i växtblad förklaras, hur tensider påverkar drivkraften och vilka egenskaper hos en blandning som påverkar upptaget utrönas. Hur tensider påverkar parametrar i barriären beskrivs också. Dessa parametrar behandlas på ett sätt som gör det möjligt att förklara de effekter som tensider faktiskt har på distributionen av bekämpningsmedel inuti cutikeln. Slutligen så utvärderas formuleringar på intakta växtblad. Detta möjliggör kartläggning över vilka roller mättnadsgraden av bekämpningsmedel i formuleringar samt effekten av tensider på växtblads barriäregenskaper spelar i bladets upptag av bekämpningsmedel. Dessa resultat sammanfattas i en ny algoritm som gör det möjligt att förutse distributionen av bekämpningsmedel i växtblad vid en given blandning. Växter utgör basen för en klart dominerande del av världens sammantagna produktion av livsmedel och djurfoder. De är också en råvara i ett flertal industriella produkter. Då befolkningen ökar och levnadsstandarden förbättras, ökar också efterfrågan på bättre mat och förbrukningsartiklar från växtbas. För att tillgodose efterfrågan strävar producenter och odlare ständigt efter ökad avkastning. Detta uppnås genom ökade odlingsarealer, effektivare användning av befintlig odlingsmark samt skydd mot skadeangrepp på växter. Det sistnämnda kan göras med hjälp av olika bekämpningsmedel som innehåller aktiva substanser. Faktum är att en livsmedelsproduktion på dagens nivå inte hade varit möjlig utan användning av bekämpningsmedel. Dessa ämnen innebär dock risker, användningen är inte fullt optimerad och förståelsen för skeenden och processer i samband med dess användning är i vissa avseenden fortfarande bristfällig.

Abstract [en]

The focus of this project has been the mechanisms of action of surfactants as agricultural adjuvants and the physico-chemical interactions between adjuvant, carrier formulation, and leaf surface. To increase the understanding of this complex system, model systems have been evaluated in parallel to in vitro studies of plant leaf cuticle. Investigations on how thermodynamic, structural and rheological properties of leaf surface constituents are affected by surfactant absorption and hydration have been central. The main techniques employed in the project are: Environmental Scanning Electron Microscopy, Differential Scanning Calorimetry, Optical Phase Contrast Microscopy with Temperature Resolution, Quartz Crystal Microbalance with Dissipation, Small- and Wide-angle X-ray Diffraction, and Franz type diffusion cells. The effects that surfactants exert on the structure of native intact plant leaf cuticle were investigated by Small- and Wide-Angle X-ray diffraction (SWAXD). The wax has a broad melting interval between 40 and 80 C which comprises a crystalline transition from orthorhombic to hexagonal sub-cell. This transition is facilitated by addition of surfactants. Both intact cuticle and extracted wax also possess lamellar long range order. Clivia is an appropriate model plant since it is related to, and has similar leaf characteristics as, some of the most important crop plants, wheat and barley. It is easy to cultivate indoors, and the leaves are wide enough to be evaluated in vitro through diffusion cell experiments. The barrier is very tough; if it works on Clivia it most probably will work in the field as well. The model of plant leaf intracuticular wax can be used to estimate formulations effects on the cuticle structure. A model was based on a leaf wax extract and comprised 1-docosanol (C22H45OH) and dotriacontane (C32H66). The thermotropic phase behaviour of the model was investigated, and the structure of individual phases in the model wax - water system was determined. The thermotropic transitions of the model wax fit in the window of the extracted leaf waxes, but the model wax would benefit from further development, striving for a more amorphous system. The effects of surfactants on the phase behaviour and the rheological characteristics of the model wax were quantified. This was done to address the current lack of understanding of how surfactants affect the barrier properties of plant leaf cuticles on a molecular level. The model wax used is crystalline at ambient conditions, yet it is clearly softened by the surfactants. The softness of the wax film increased in irreversible steps after surfactant exposure and of the two surfactants used, C10EO7 has a stronger fluidizing effect than C8G1.6. Intracuticular waxes (IW) comprise both crystalline and amorphous domains. Surfactants mainly exercise their fluidizing effects in amorphous regions. A mechanism is suggested to explain the fluidizing effects seen on a largely crystalline model wax. It is proposed that surfactants may enter the crevices in between crystalline domains to establish an expanded continuous amorphous network. Surfactants allow higher amounts of active ingredients in solution, available for penetration. Commercial products (normally concentrates) may contain such high amounts of active ingredient that complete solubilisation is never reached, even after dilution. Crystalline active ingredients cannot enter the cuticle and may lead to an unnecessary environmental burden when dislocated from the leaf. The rate of active ingredient leaf uptake may be increased by an appropriate surfactant. Surfactants increase the flux of active ingredients over the cuticle barrier by increasing the diffusion coefficient inside the cuticle. Based on Fick’s first law, an algorithm that accommodates changes in boundary conditions and takes partition into account was developed. It thereby provides a more accurate method, compared to the standard equations normally used for calculating solute diffusion coefficients in membranes. The same quantitative increase in both flux (Ji) and diffusion coefficient (Di) was observed with surfactants present, while the cuticle-water partition coefficient (lg Kcw) remained unchanged. Evaluation tools have been developed by the establishment of QCM-D and membrane diffusion protocols, and the investigations on model wax. These tools can facilitate the determination of desired properties of new and better adjuvants in agriculture. Subsequently, it may contribute to a more cost-efficient and environmentally friendly usage of pesticides in foliar spray applications. The wider aim of this project was to contribute to a more efficient and optimized pesticide application through investigation of the cuticle and its interplay with surfactant solutions.

Place, publisher, year, edition, pages
Malmö University, Faculty of Health and Society, 2014. p. 85
Series
Malmö University Health and Society Dissertations, ISSN 1653-5383 ; 3
Keywords
Adjuvant, Surfacant, Cuticle, Tebuconazole, Diffusion, Clivia miniata Regel leaf, Model wax, Phase diagram, Hydration, Eutectic melting, Crystalline domains, Softening, Wax film, Quartz Crystal Microbalance with dissipation (QCM-D), Differential Scanning Calorimetry (DSC), Small- and Wide-angle X-ray Diffraction (SWAXD)
National Category
Natural Sciences
Identifiers
urn:nbn:se:mau:diva-7345 (URN)17029 (Local ID)978-91-7104-576-8 (ISBN)978-91-7104-575-1 (ISBN)17029 (Archive number)17029 (OAI)
Note

Note: The papers are not included in the fulltext online.

Available from: 2020-02-28 Created: 2020-02-28 Last updated: 2024-03-12Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Fagerström, AntonKocherbitov, VitalyRuzgas, TautgirdasEngblom, Johan

Search in DiVA

By author/editor
Fagerström, AntonKocherbitov, VitalyRuzgas, TautgirdasEngblom, Johan
By organisation
Department of Biomedical Science (BMV)
In the same journal
Colloids and Surfaces B: Biointerfaces
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 31 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf