Malmö University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Fully Enzymatic Membraneless Glucose|Oxygen Fuel Cell That Provides 0.275 mA cm-?2 in 5 mM Glucose, Operates in Human Physiological Solutions, and Powers Transmission of Sensing Data
School of Chemistry, Ryan Institute, National University of Ireland, Galway, Ireland.
Malmö högskola, Faculty of Health and Society (HS), Department of Biomedical Science (BMV).
School of Chemistry, Ryan Institute, National University of Ireland, Galway, Ireland.
Department of Biochemistry and Structural Biology, Lund University, PO Box 124, Lund, 221 00, Sweden.
Show others and affiliations
2016 (English)In: Analytical Chemistry, ISSN 0003-2700, E-ISSN 1520-6882, Vol. 88, no 4, p. 2156-2163Article in journal (Refereed)
Abstract [en]

Coimmobilization of pyranose dehydrogenase as an enzyme catalyst, osmium redox polymers [Os(4,​4'-​dimethoxy-​2,​2'-​bipyridine)​2(poly(vinylimidazole)​)​10Cl]​+ or [Os(4,​4'-​dimethyl-​2,​2'-​bipyridine)​2(poly(vinylimidazole)​)​10Cl]​+ as mediators, and carbon nanotube conductive scaffolds in films on graphite electrodes provides enzyme electrodes for glucose oxidn. The recombinant enzyme and a deglycosylated form, both expressed in Pichia pastoris, are investigated and compared as biocatalysts for glucose oxidn. using flow injection amperometry and voltammetry. In the presence of 5 mM glucose in phosphate-​buffered saline (PBS) (50 mM phosphate buffer soln., pH 7.4, with 150 mM NaCl)​, higher glucose oxidn. current densities, 0.41 mA​/cm2, are obtained from enzyme electrodes contg. the deglycosylated form of the enzyme. The optimized glucose-​oxidizing anode, prepd. using deglycosylated enzyme coimmobilized with [Os(4,​4'-​dimethyl-​2,​2'-​bipyridine)​2(poly(vinylimidazole)​)​10Cl]​+ and carbon nanotubes, was coupled with an oxygen-​reducing bilirubin oxidase on gold nanoparticle dispersed on gold electrode as a biocathode to provide a membraneless fully enzymic fuel cell. A max. power d. of 275 μW​/cm2 is obtained in 5 mM glucose in PBS, the highest to date under these conditions, providing sufficient power to enable wireless transmission of a signal to a data logger. When tested in whole human blood and unstimulated human saliva max. power densities of 73 and 6 μW​/cm2 are obtained for the same fuel cell configuration, resp.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2016. Vol. 88, no 4, p. 2156-2163
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:mau:diva-14830DOI: 10.1021/acs.analchem.5b03745ISI: 000370454000028PubMedID: 26750758Scopus ID: 2-s2.0-84958260540Local ID: 21932OAI: oai:DiVA.org:mau-14830DiVA, id: diva2:1418351
Available from: 2020-03-30 Created: 2020-03-30 Last updated: 2024-06-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Falk, MagnusShleev, Sergey

Search in DiVA

By author/editor
Falk, MagnusShleev, Sergey
By organisation
Department of Biomedical Science (BMV)
In the same journal
Analytical Chemistry
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 53 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf