Malmö University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Performance of enzymatic fuel cell in cell culture
Malmö högskola, Faculty of Health and Society (HS), Department of Biomedical Science (BMV).
Malmö högskola, Faculty of Health and Society (HS), Department of Biomedical Science (BMV).ORCID iD: 0000-0001-6421-2158
Malmö högskola, Faculty of Health and Society (HS), Department of Biomedical Science (BMV).
Show others and affiliations
2014 (English)In: Biosensors & bioelectronics, ISSN 0956-5663, E-ISSN 1873-4235, Vol. 55, p. 168-173Article in journal (Refereed) Published
Abstract [en]

Here we present the very first study of an enzymatic fuel cell (EFC) in a cell culture. An EFC with Corynascus thermophilus cellobiose dehydrogenase (CDH) based bioanode and Myrothecium verrucaria bilirubin oxidase (Box) based biocathode was constructed at the bottom of a medusa cell culture plate. The constructed EFC had a power density of up to 25 mu W cm(-2) at 0.5 V potential in simple buffer solution and in cell culturing medium. L929 murine fibroblast cells were seeded on top of the EFC and possible effects of the EFC on the cells and vice versa were studied. It was shown that on average the power of the EFC drops by about 70% under a nearly confluent layer of cells. The EFC appeared to have a toxic effect on the L929 cell line. It was concluded that the bioanode, consisting of CDH, produced hydrogen peroxide at toxic concentrations. However, the toxic effect was circumvented by co-immobilizing catalase on the bioanode.

Place, publisher, year, edition, pages
Elsevier, 2014. Vol. 55, p. 168-173
Keywords [en]
Biofuel cell, L929 cell line, Cellobiose dehydrogenase, Bilirubin oxidase, Direct electron transfer, Toxicity
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:mau:diva-14720DOI: 10.1016/j.bios.2013.12.013ISI: 000332426100026PubMedID: 24374299Scopus ID: 2-s2.0-84891136120Local ID: 18092OAI: oai:DiVA.org:mau-14720DiVA, id: diva2:1418241
Available from: 2020-03-30 Created: 2020-03-30 Last updated: 2024-02-05Bibliographically approved
In thesis
1. Design and characterization of direct electron transfer based biofuel cells including tests in cell cultures
Open this publication in new window or tab >>Design and characterization of direct electron transfer based biofuel cells including tests in cell cultures
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Enzymatic fuel cells (EFCs) are bioelectronic devices based on redox enzymes, which convert chemical energy into electrical energy via biochemical reactions. A major difficulty to overcome is to successfully connect (using e.g., immobilization) the enzymes to the electrode surface. Since the immobilization process often stabilizes the enzyme, the electrode surface and the enzyme/electrode interface is of utmost importance for both the efficiency and stability of the EFC. In this work several different means of establishing the enzyme/electrode connection have been investigated.In order to construct a device that utilizes direct electron transfer the electrode surfaces were modified with nanostructures and, in some designs, self-assembled monolayers of thiols. The performance of the electrodes was evaluated by electrochemical methods, including potential sweeps and chronopotentiometry. Catalytic constants could be calculated mathematically by combining electrochemical methods with surface characterization methods, such as quartz crystal microbalance with dissipation and ellipsometry. All the fuel cells covered by this thesis are based on direct electron transfer processes. All designs also oxidize carbohydrates and reduce oxygen using cellobiose dehydrogenase and multi-copper oxidase, respectively.Our results revealed that the use of particular thiol had the capability to electrically connect cellobiose dehydrogenase to the electrode, equalling the commonly used two-thiol system. Both designs reached similar current densities, Le., about 20 jiA cm 2 with 5 mM lactose and the enzyme immobilized on thiolated gold nanoparticles (AuNPs). Both Bilirubin oxidase and Trichaptum abietinum Laccase could be directly immobilized on gold nanoparticles and current densities of up to 180 pA cm 2 were achieved. The 9- fold difference in currents with BOx and CDH reveals that the bioanode in this system requires more improvement to match the biocathode in performance. Upon doser inspection of the biointerface as regards the bioanode, it was concluded that a positive charge on the thiol was needed to create a direct (electric) contact between CDH and the electrode surface. Furthermore, the catalytic currents were nearly halved when the charged groups on the thiol were further modified with methyl groups.Biocompatibility of an implantable EFC design was evaluated using cell cultures of mammal cells, which was the first study of its kind. Toxicology tests revealed toxic by-products from the bioanode previously not reported in EFCs implanted in animals. The currents of the EFC was reduced by about half in cell culturing medium (10 1.1A cm') compared to PBS solutions, and was even more drastically reduced upon direct contact with fibroblast cells (1 jiA cm').

Place, publisher, year, edition, pages
Malmö university, Faculty of Health and Society, 2014. p. 73
Series
Malmö University Health and Society Dissertations, ISSN 1653-5383 ; 4
Keywords
biofuel cell, enzymatic fuel cell, direct electron transfer, cellobiose dehydrogenase, biocompatibility, enzyme kinetics, cell culture
National Category
Natural Sciences
Identifiers
urn:nbn:se:mau:diva-7317 (URN)17335 (Local ID)978-91-7104-611-6 (ISBN)978-91-7104-612-3 (ISBN)17335 (Archive number)17335 (OAI)
Note

Paper III in dissertation as manuscript with title "Electroactive biomaterial based on enzymatic catalysis and physical factors affecting its performance"

Available from: 2020-02-28 Created: 2020-02-28 Last updated: 2024-01-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Shleev, SergeyArnebrant, ThomasRuzgas, Tautgirdas

Search in DiVA

By author/editor
Shleev, SergeyArnebrant, ThomasRuzgas, Tautgirdas
By organisation
Department of Biomedical Science (BMV)
In the same journal
Biosensors & bioelectronics
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 20 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf