Malmö University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Structural and Mechanical Properties of Thin Films of Bovine Submaxillary Mucin (BSM) vs. Porcine Gastric Mucin (PGM) on a Hydrophobic Surface in Aqueous Solutions
Department of Mechanical Engineering, Technical University of Denmark , 2800 Kongens Lyngby, Denmark.
Malmö högskola, Faculty of Health and Society (HS), Department of Biomedical Science (BMV). Malmö högskola, Biofilms Research Center for Biointerfaces.ORCID iD: 0000-0001-6937-3057
Department of Mechanical Engineering, Technical University of Denmark , 2800 Kongens Lyngby, Denmark.
Department of Mechanical Engineering, Technical University of Denmark , 2800 Kongens Lyngby, Denmark.
Show others and affiliations
2016 (English)In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 32, no 38, p. 9687-9696Article in journal (Refereed)
Abstract [en]

The structural and mechanical properties of thin films generated from two types of mucins, namely, bovine submaxillary mucin (BSM) and porcine gastric mucin (PGM) in aqueous environment were investigated with several bulk and surface analytical techniques. Both mucins generated hydrated films on hydrophobic polydimethylsiloxane (PDMS) surfaces from spontaneous adsorption arising from their amphiphilic characteristic. However, BSM formed more elastic films than PGM at neutral pH condition. This structural difference was manifested from the initial film formation processes to the responses to shear stresses applied to the films. Acidification of environmental pH led to strengthening the elastic character of BSM films with increased adsorbed mass, whereas an opposite trend was observed for PGM films. We propose that this contrast originates from that negatively charged motifs are present for both the central and terminal regions of BSM molecule, whereas a similar magnitude of negative charges is localized at the termini of PGM molecule. Given that hydrophobic motifs acting as an anchor are also localized in the terminal region, electrostatic repulsion between anchoring units of PGM molecules on a nonpolar PDMS surface leads to weakening of the mechanical integrity of the films.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2016. Vol. 32, no 38, p. 9687-9696
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:mau:diva-14684DOI: 10.1021/acs.langmuir.6b02057ISI: 000384398100001PubMedID: 27597630Scopus ID: 2-s2.0-84989238680Local ID: 21929OAI: oai:DiVA.org:mau-14684DiVA, id: diva2:1418205
Available from: 2020-03-30 Created: 2020-03-30 Last updated: 2024-06-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Sotres, JavierArnebrant, Thomas

Search in DiVA

By author/editor
Sotres, JavierArnebrant, Thomas
By organisation
Department of Biomedical Science (BMV)Biofilms Research Center for Biointerfaces
In the same journal
Langmuir
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 30 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf