Fibrous mechanosensing elements can provide information about the direction of crack propagation and the mechanism of material failure when they are homogeneously dispersed into the bulk volume of materials. A fabrication strategy of fibrous systems showing triboluminescent (TL) responses is in high demand for such applications. In this work, micrometer-sized Cu(NCS) (py)(2)(PPh3) crystals were synthesized, and polymeric fibrous mats containing the TL crystals were obtained via electrospinning as a stress probe for the determination of mechanical impact. Four different polymeric systems have been employed (PMMA, PS, PU, and PVDF), and the mechano-optical sensing performance of electrospun mats of the polymer-crystal composites was measured. Photophysical properties (quantum yield, band gap, and broadness of the emission) of the TL crystal/electrospun mat composites were also studied. TL and PL emission maxima of the PU-based composite mat show identical behavior due to the chemical affinity between the two structures and the smallest fiber diameter. Moreover, the PU fiber mats exhibit long-lived bluish-green emission persisting over a large number of drops.