Monolithic composites of Polyphepan (R) or Kraft lignin embedded in a poly(vinyl alcohol) (PVA) matrix were synthesized using cryogelation technique and studied as flow permeable adsorbents for bisphenol A and erythromycin removal from water. Adsorption isotherms of bisphenol A on pristine Polyphepan provided the equilibrium dissociation constant K-L = 2.6 x 10 (6) M and the maximal binding capacity Q(max) = 20 mu mol/g; for erythromycin K-L was in the 9.6 x 10 (6) M to 5.8 x 10 (5) M range, and Q(max) was between 55 mu mol/g and 94 mu mol/g. Embedment of lignins into PVA cryogels resulted in monoliths with adequate flow permeability and the composites essentially retained the binding capacity for both bisphenol A and erythromycin. Percolation of contaminated water through the monoliths resulted in 10-fold reduction of the pollutant concentrations within 12-70 column volumes of the effluent. Due to the higher loading of lignin, the Kraft lignin-PVA composite showed higher adsorption capacity for erythromycin than Polyphepan-PVA. Stability and reversible compression of the monoliths in the flow of water were studied. Limitations are associated with leakage of soluble lignin, strongly expressed in the case of Kraft lignin-containing composites. (C) 2016 Elsevier Ltd. All rights reserved.