Malmö University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Hydration-Induced Phase Transitions in Surfactant and Lipid Films
Malmö högskola, Faculty of Health and Society (HS), Department of Biomedical Science (BMV). Malmö högskola, Biofilms Research Center for Biointerfaces.ORCID iD: 0000-0001-6254-8539
Malmö högskola, Faculty of Health and Society (HS), Department of Biomedical Science (BMV). Malmö högskola, Biofilms Research Center for Biointerfaces.ORCID iD: 0000-0002-9852-5440
2016 (English)In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 32, no 21, p. 5223-5232Article in journal (Refereed)
Abstract [en]

For several surfactant and lipid systems, it is crucial to understand how hydration influences the physical and chemical properties. When humidity changes, it affects the degree of hydration by adding or removing water molecules. In many cases, this process induces transitions between liquid crystalline phases. This phenomenon is of general interest for numerous applications simply because of the fact that humidity variations are ubiquitous. Of particular interest are hydration-induced phase transitions in amphiphilic films, which in many cases appear as the frontier toward a vapor phase with changing humidity. Considering this, it is important to characterize the film thickness needed for the formation of 3D liquid crystalline phases and the lyotropic phase behavior of this kind of film. In this work, we study this issue by employing a recently developed method based on the humidity scanning quartz crystal microbalance with dissipation monitoring (HS QCM-D), which enables continuous scanning of the film hydration. We investigate five surfactants films (DDAO, DTAC, CTAC, SDS, and n-octyl beta-D-glucoside) and one lipid film (monoolein) and show that HS QCM-D enables the fast characterization of hydration-induced phase transitions with small samples. Film thicknesses range from tens to hundreds of nanometers, and clear phase transitions are observed in all cases. It is shown that phase transitions in films occur at the same water activities as for corresponding bulk samples. This allows us to conclude that surfactant and lipid films, with a thickness of as low as 50 nm, are in fact assembled as 3D-structured liquid crystalline phases. Furthermore, liquid crystalline phases of surfactant films show liquidlike behavior, which decreases the accuracy of the absorbed water mass measurement. On the other hand, the monoolein lipid forms more rigid liquid crystalline films, allowing for an accurate determination of the water sorption isotherm, which is also true for the sorption isotherms corresponding to the solid surfactant phases.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2016. Vol. 32, no 21, p. 5223-5232
Keywords [en]
Chemistry, Multidisciplinary, Chemistry, Physical, Materials Science, Multidisciplinary
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:mau:diva-4415DOI: 10.1021/acs.langmuir.6b00452ISI: 000377151300001PubMedID: 27124238Scopus ID: 2-s2.0-84973345204Local ID: 21874OAI: oai:DiVA.org:mau-4415DiVA, id: diva2:1401246
Available from: 2020-02-28 Created: 2020-02-28 Last updated: 2024-02-05Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Björklund, SebastianKocherbitov, Vitaly

Search in DiVA

By author/editor
Björklund, SebastianKocherbitov, Vitaly
By organisation
Department of Biomedical Science (BMV)Biofilms Research Center for Biointerfaces
In the same journal
Langmuir
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 136 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf