The development of miniature autonomous bioelectronic devices that function in the human or animal internal environments is one of the most popular areas of bioelectronics. In recent works, a concept was developed for the creation of charge-storing fuel cells, or in other words self-charging supercapacitors based on (bio)electrodes with a dual function of generation and accumulation of electric charge and operating in both continuous and pulse modes. The main purpose of this work is to create a potentially implantable biodevice with a dual function of generation and accumulation of electrical charge on the basis of a membraneless nanobiocomposite biocathode with CNT/PANI/MvBOx composite material and a bioanode with GOx/AuNPs composite material, as well as investigation of their stability and efficiency in solutions close to the human blood. Nanobiocomposite materials are widely used as components of electronic devices for biomedical applications (biosensors, bio-fuel cells, biobataries, etc.) Modern bioelectronic devices based on nanocomposite materials can be used to influence organs and tissues, as well as for point delivery of drugs. Electrically conductive polymers are usually synthesized by chemical methods in an acid medium by oxidative polymerization of the monomer. This approach has a number of disadvantages, in particular, contamination of the final product with residual monomers and oxidant degradation products. Therefore, in this paper, electrochemical and enzymatic methods for the synthesis of electrically conducting polymers have been tested, which may be an alternative to chemical polymerization.