Malmö University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Biofuel cells for biomedical applications: colonizing the animal kingdom
Malmö högskola, Faculty of Health and Society (HS), Department of Biomedical Science (BMV).
Show others and affiliations
2013 (English)In: ChemPhysChem, ISSN 1439-4235, E-ISSN 1439-7641, Vol. 14, no 10, p. 2045-2058Article, review/survey (Refereed)
Abstract [en]

A review. Interdisciplinary research has combined the efforts of many scientists and engineers to gain an understanding of biotic and abiotic electrochem. processes, materials properties, biomedical, and engineering approaches for the development of alternative power-​generating and​/or energy-​harvesting devices, aiming to solve health-​related issues and to improve the quality of human life. This review intends to recapitulate the principles of biofuel cell development and the progress over the years, thanks to the contribution of cross-​disciplinary researchers that have combined knowledge and innovative ideas to the field. The emergence of biofuel cells, as a response to the demand of elec. power devices that can operate under physiol. conditions, are reviewed. Implantable biofuel cells operating inside living organisms have been envisioned for over fifty years, but few reports of implanted devices have existed up until very recently. The very first report of an implanted biofuel cell (implanted in a grape) was published only in 2003 by Adam Heller and his coworkers. This work was a result of earlier scientific efforts of this group to "wire" enzymes to the electrode surface. The last couple of years have, however, seen a multitude of biofuel cells being implanted and operating in different living organisms, including mammals. Herein, the evolution of the biofuel concept, the understanding and employment of catalyst and biocatalyst processes to mimic biol. processes, are explored. These potentially green technol. biodevices are designed to be applied for biomedical applications to power nano- and microelectronic devices, drug delivery systems, biosensors, and many more.

Place, publisher, year, edition, pages
Wiley-VCH Verlagsgesellschaft, 2013. Vol. 14, no 10, p. 2045-2058
Keywords [en]
biofuel cells, electron transfer mechanisms, implantable devices, nanomaterials, redox enzymes
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:mau:diva-830DOI: 10.1002/cphc.201300044ISI: 000322236400009PubMedID: 23460490Scopus ID: 2-s2.0-84880991218Local ID: 16495OAI: oai:DiVA.org:mau-830DiVA, id: diva2:1397505
Available from: 2020-02-27 Created: 2020-02-27 Last updated: 2024-02-06Bibliographically approved
In thesis
1. Direct electron transfer based biofuel cells: operating in vitro and in vivo
Open this publication in new window or tab >>Direct electron transfer based biofuel cells: operating in vitro and in vivo
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [sv]

I vår moderna värd är vi väldigt beroende av elektrisk energi som vi använder för det mesta i får vardag: för att lysa upp våra hus, generera värme, driva våra datorer och mobiltelefoner och mycket mer. Produktion av elektrisk energi har dock ofta en negativ på-verkan på vår miljö. Ett alternativt sätt att producera elektrik energi är att använda sig av bränsleceller, vilka kan liknas vid öppna batterier som ständigt kan förses med nytt bränsle och således inte behöver bytas ut efter ett tag. Bränslet som används kan väljas så att dess förbrukning inte innebär någon negativ påverkan på miljön. Den här avhandlingen fokuserar sig på en viss typ av bränsleceller, där man använder sig av specifika proteiner, enzymer, för att omvandla energi från bränslet till elektrisk energi. Som bränsle kan vanligt förekommande kolhydrater, dvs. socker, samt syre användas. Socker och syre används även av vår kropp för att skapa energi, och genom att använda sig av rätt sorts enzymer kan även bränsleceller använda sig av dessa ämnen för att producera elektrisk energi. Således är det möjligt för dessa bränsleceller att producera elektrisk energi placerade inuti oss. Dessa biobränsleceller kan sedan användas för att driva t.ex. olika sensorer direkt i vår kropp som kontinuerligt skulle kunna ge information till sjukvården, utan att använda sig av batterier som behöver bytas ut. Avhandlingen är baserad på att undersöka hur olika bränsleceller som använder sig av enzym fungerar samt att testa dem i olika mänskliga kroppsvätskor samt även inuti levande organismer. Genom att öka förståelsen för detta är förhoppningen att bränsleceller baserade på enzym inom en inte allt för avlägsen framtid kan finna tillämpningar som elektriska försörjare för t.ex. självförsörjande biomedicinska sensorer.

Abstract [en]

The focus of this thesis is the development and design of direct electron transfer based enzymatic fuel cells, with the possible use in biomedical applications. For biodevice fabrication, macro- and micro-scaled nanostructured gold electrodes were fabricated and characterized in detail, employing electrochemical techniques, as well as atomic force microscopy and scanning electron microscopy. The nanostructured electrodes were utilized together with suitable (bio)catalysts to achieve efficient catalysis of suitable biofuel and biooxidant. Oxygen was utilized as biooxidant, employing the enzyme bilirubin oxidase together with nanostructured electrodes to achieve efficient bioelectrocatalysis. The mechanism of bioelectrocatalytic reduction of oxygen by bilirubin oxidase was investigated in detail utilizing electrochemical techniques combined with quantum mechanic/molecular mechanic modeling. Carbohydrates were utilized as the main biofuel in most of the studies, by employing cellobiose dehydrogenase immobilized on nanostructured electrodes. Additionally, tetracyanoquinodimethane and tetrathiafulvalene were employed as efficient catalysts of ascorbate. The performance of assembled enzymatic fuel cells were in-vestigated in vitro in complex buffers and human physiological fluids, as well as in vivo evaluated using different electrochemical techniques.

Place, publisher, year, edition, pages
Malmö University, Faculty of Health and Society, 2014. p. 60
Series
Malmö University Health and Society Dissertations, ISSN 1653-5383 ; 1
Keywords
biofuel cell, direct electron transfer, enzymes, gold nanoparticles, implantable biomedical devices
National Category
Natural Sciences
Identifiers
urn:nbn:se:mau:diva-7313 (URN)16111 (Local ID)978-91-7104-529-4 (ISBN)978-91-7104-530-0 (ISBN)16111 (Archive number)16111 (OAI)
Note

Note: The papers are not included in the fulltext online.

Paper VI in dissertation as manuscript.

Available from: 2020-02-28 Created: 2020-02-28 Last updated: 2024-03-13Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopushttp://onlinelibrary.wiley.com/doi/10.1002/cphc.201300044/abstract;jsessionid=466414B79D6A70A31B58BE74E83912C6.f03t02

Authority records

Falk, MagnusShleev, Sergey

Search in DiVA

By author/editor
Falk, MagnusShleev, Sergey
By organisation
Department of Biomedical Science (BMV)
In the same journal
ChemPhysChem
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 34 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf