Malmö University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Unraveling UVB effects: Catalase activity and molecular alterations in the stratum corneum.
Malmö University, Faculty of Health and Society (HS), Department of Biomedical Science (BMV). Malmö University, Biofilms Research Center for Biointerfaces. Division of Physical Chemistry, Chemistry Department, Lund University, SE-221 00 Lund, Sweden.
Malmö University, Faculty of Health and Society (HS), Department of Biomedical Science (BMV). Malmö University, Biofilms Research Center for Biointerfaces.
Malmö University, Faculty of Health and Society (HS), Department of Biomedical Science (BMV). Malmö University, Biofilms Research Center for Biointerfaces. Division of Physical Chemistry, Chemistry Department, Lund University, SE-221 00 Lund, Sweden; CR Competence AB, Box 124, 22100 Lund, Sweden.
Division of Physical Chemistry, Chemistry Department, Lund University, SE-221 00 Lund, Sweden.
Show others and affiliations
2024 (English)In: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, Vol. 666, p. 176-188, article id S0021-9797(24)00709-4Article in journal (Refereed) Published
Abstract [en]

AIM: Ultraviolet B (UVB) radiation can compromise the functionality of the skin barrier through various mechanisms. We hypothesize that UVB induce photochemical alterations in the components of the outermost layer of the skin, known as the stratum corneum (SC), and modulate its antioxidative defense mechanisms. Catalase is a well-known antioxidative enzyme found in the SC where it acts to scavenge reactive oxygen species. However, a detailed characterization of acute UVB exposure on the activity of native catalase in the SC is lacking. Moreover, the effects of UVB irradiation on the molecular dynamics and organization of the SC keratin and lipid components remain unclear. Thus, the aim of this work is to characterize consequences of UVB exposure on the structural and antioxidative properties of catalase, as well as on the molecular and global properties of the SC matrix surrounding the enzyme.

EXPERIMENTS: The effect of UVB irradiation on the catalase function is investigated by chronoamperometry with a skin covered oxygen electrode, which probes the activity of native catalase in the SC matrix. Circular dichroism is used to explore changes of the catalase secondary structure, and gel electrophoresis is used to detect fragmentation of the enzyme following the UVB exposure. UVB induced alterations of the SC molecular dynamics and structural features of the SC barrier, as well as its water sorption behavior, are investigated by a complementary set of techniques, including natural abundance 13C polarization transfer solid-state NMR, wide-angle X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, and dynamic vapor sorption microbalance.

FINDINGS: The findings show that UVB exposure impairs the antioxidative function of catalase by deactivating both native catalase in the SC matrix and lyophilized catalase. However, UVB radiation does not alter the secondary structure of the catalase nor induce any observable enzyme fragmentation, which otherwise could explain deactivation of its function. NMR measurements on SC samples show a subtle increase in the molecular mobility of the terminal segments of the SC lipids, accompanied by a decrease in the mobility of lipid chain trans-gauche conformers after high doses of UVB exposure. At the same time, the NMR data suggest increased rigidity of the polypeptide backbone of the keratin filaments, while the molecular mobility of amino acid residues in random coil domains of keratin remain unaffected by UVB irradiation. The FTIR data show a consistent decrease in absorbance associated with lipid bond vibrations, relative to the main protein bands. Collectively, the NMR and FTIR data suggest a small modification in the composition of fluid and solid phases of the SC lipid and protein components after UVB exposure, unrelated to the hydration capacity of the SC tissue. To conclude, UVB deactivation of catalase is anticipated to elevate oxidative stress of the SC, which, when coupled with subtle changes in the molecular characteristics of the SC, may compromise the overall skin health and elevate the likelihood of developing skin disorders.

Place, publisher, year, edition, pages
Elsevier, 2024. Vol. 666, p. 176-188, article id S0021-9797(24)00709-4
Keywords [en]
Catalase, Keratin filaments, Lipid multilamellar matrix, Oxidative stress, Stratum corneum, UVB, Ultraviolet radiation
National Category
Physical Chemistry
Identifiers
URN: urn:nbn:se:mau:diva-66988DOI: 10.1016/j.jcis.2024.03.200PubMedID: 38593652Scopus ID: 2-s2.0-85189861942OAI: oai:DiVA.org:mau-66988DiVA, id: diva2:1854762
Available from: 2024-04-26 Created: 2024-04-26 Last updated: 2024-04-26Bibliographically approved

Open Access in DiVA

fulltext(2632 kB)50 downloads
File information
File name FULLTEXT01.pdfFile size 2632 kBChecksum SHA-512
cc2cb0a89b67e0f31d7929ebb779570d00d144344c8efc46ca11dad50fa4a5acc0b81f23645bdb65674e37134229fccb9e8b05ed950770a6cf37e64e8e2b3339
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMedScopus

Authority records

Labecka, NikolSzczepanczyk, MichalMojumdar, Enamul HaqueBjörklund, Sebastian

Search in DiVA

By author/editor
Labecka, NikolSzczepanczyk, MichalMojumdar, Enamul HaqueBjörklund, Sebastian
By organisation
Department of Biomedical Science (BMV)Biofilms Research Center for Biointerfaces
In the same journal
Journal of Colloid and Interface Science
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar
Total: 50 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 305 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf