Publikationer från Malmö universitet
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Passive Infrared Sensor-Based Occupancy Monitoring in Smart Buildings: A Review of Methodologies and Machine Learning Approaches
Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).ORCID-id: 0009-0006-2237-3010
Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).ORCID-id: 0000-0002-9471-8405
Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).ORCID-id: 0000-0002-2763-8085
Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).ORCID-id: 0000-0001-6925-0444
Vise andre og tillknytning
2024 (engelsk)Inngår i: Sensors, E-ISSN 1424-8220, Vol. 24, nr 5, artikkel-id 1533Artikkel, forskningsoversikt (Fagfellevurdert) Published
Abstract [en]

Buildings are rapidly becoming more digitized, largely due to developments in the internet of things (IoT). This provides both opportunities and challenges. One of the central challenges in the process of digitizing buildings is the ability to monitor these buildings' status effectively. This monitoring is essential for services that rely on information about the presence and activities of individuals within different areas of these buildings. Occupancy information (including people counting, occupancy detection, location tracking, and activity detection) plays a vital role in the management of smart buildings. In this article, we primarily focus on the use of passive infrared (PIR) sensors for gathering occupancy information. PIR sensors are among the most widely used sensors for this purpose due to their consideration of privacy concerns, cost-effectiveness, and low processing complexity compared to other sensors. Despite numerous literature reviews in the field of occupancy information, there is currently no literature review dedicated to occupancy information derived specifically from PIR sensors. Therefore, this review analyzes articles that specifically explore the application of PIR sensors for obtaining occupancy information. It provides a comprehensive literature review of PIR sensor technology from 2015 to 2023, focusing on applications in people counting, activity detection, and localization (tracking and location). It consolidates findings from articles that have explored and enhanced the capabilities of PIR sensors in these interconnected domains. This review thoroughly examines the application of various techniques, machine learning algorithms, and configurations for PIR sensors in indoor building environments, emphasizing not only the data processing aspects but also their advantages, limitations, and efficacy in producing accurate occupancy information. These developments are crucial for improving building management systems in terms of energy efficiency, security, and user comfort, among other operational aspects. The article seeks to offer a thorough analysis of the present state and potential future advancements of PIR sensor technology in efficiently monitoring and understanding occupancy information by classifying and analyzing improvements in these domains.

sted, utgiver, år, opplag, sider
MDPI, 2024. Vol. 24, nr 5, artikkel-id 1533
Emneord [en]
passive infrared sensors (PIR), smart buildings, IoT (internet of things), occupancy information, people counting, activity detection, machine learning
HSV kategori
Identifikatorer
URN: urn:nbn:se:mau:diva-66548DOI: 10.3390/s24051533ISI: 001183072000001PubMedID: 38475069Scopus ID: 2-s2.0-85187481668OAI: oai:DiVA.org:mau-66548DiVA, id: diva2:1847561
Tilgjengelig fra: 2024-03-28 Laget: 2024-03-28 Sist oppdatert: 2024-05-02bibliografisk kontrollert

Open Access i DiVA

fulltext(2331 kB)163 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 2331 kBChecksum SHA-512
2c5a7af8b8e588a4d2bafc940598b6240164fe1c9c04963195581e1488e661ba765435094dae6bda697465eb13e5d790306f61f5f255771b6f8da3f557e5a9c3
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstPubMedScopus

Person

Shokrollahi, AzadPersson, Jan A.Malekian, RezaSarkheyli-Hägele, Arezoo

Søk i DiVA

Av forfatter/redaktør
Shokrollahi, AzadPersson, Jan A.Malekian, RezaSarkheyli-Hägele, Arezoo
Av organisasjonen
I samme tidsskrift
Sensors

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 163 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 239 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf