Publikationer från Malmö universitet
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Classification of Complex-Valued Radar Data using Semi-Supervised Learning: a Case Study
Chalmers University of Technology, Gothenburg, Sweden.
Chalmers University of Technology, Gothenburg, Sweden.
Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).ORCID-id: 0000-0002-7700-1816
2023 (Engelska)Ingår i: 2023 49th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), Institute of Electrical and Electronics Engineers (IEEE), 2023Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

In recent years, the interest in applying machine learning (ML) and deep learning (DL) has been increasing due to their ability to learn to predict and find structure in data. The most common approach of ML and DL is supervised learning. Supervised learning requires the input data to be labeled. However, as reported by many industries, such as the embedded systems domain, fully labeled datasets are difficult to obtain since data labeling is manually intensive. This paper uses a semi-supervised learning approach on real-world Pulse-Doppler data obtained from our industry collaborator Saab to address this challenge. We took inspiration from the FixMatch algorithm. To investigate whether unlabeled data can help improve classification accuracy, we compare FixMatch to a supervised baseline. We use five different settings for the number of available labels per class label to investigate how many labeled instances and how much manual effort is required for optimal accuracy. Bayesian Linear Regression is used to analyze the results. The results show that FixMatch can reach a higher accuracy than the supervised baseline. Furthermore, FixMatch requires more computation time but will help reduce manual effort. In addition, FixMatch will not underfit or overfit. Thanks to this study, practitioners know the benefits of utilizing FixMatch and when it is safe to use to improve a supervised baseline in the industry.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE), 2023.
Serie
Proceedings (EUROMICRO Conference on Software Engineering and Advanced Applications), ISSN 2640-592X, E-ISSN 2376-9521
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:mau:diva-64895DOI: 10.1109/SEAA60479.2023.00024ISBN: 979-8-3503-4235-2 (digital)ISBN: 979-8-3503-4236-9 (tryckt)OAI: oai:DiVA.org:mau-64895DiVA, id: diva2:1825296
Konferens
2023 49th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), Durres, Albania, 06-08 September 2023
Tillgänglig från: 2024-01-09 Skapad: 2024-01-09 Senast uppdaterad: 2024-01-09Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Person

Olsson, Helena Holmström

Sök vidare i DiVA

Av författaren/redaktören
Olsson, Helena Holmström
Av organisationen
Institutionen för datavetenskap och medieteknik (DVMT)
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 18 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf