Publikationer från Malmö universitet
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Quantifying Parkinson's disease severity using mobile wearable devices and machine learning: the ParkApp pilot study protocol
Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).ORCID-id: 0000-0002-7102-083X
Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).ORCID-id: 0000-0002-4261-281X
Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden; Center for Neurology, Academic Specialist Center Torsplan, Region Stockholm, Sweden.
Visa övriga samt affilieringar
2023 (Engelska)Ingår i: BMJ Open, E-ISSN 2044-6055, Vol. 13, nr 12, artikel-id e077766Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

INTRODUCTION: The clinical assessment of Parkinson's disease (PD) symptoms can present reliability issues and, with visits typically spaced apart 6 months, can hardly capture their frequent variability. Smartphones and smartwatches along with signal processing and machine learning can facilitate frequent, remote, reliable and objective assessments of PD from patients' homes.

AIM: To investigate the feasibility, compliance and user experience of passively and actively measuring symptoms from home environments using data from sensors embedded in smartphones and a wrist-wearable device.

METHODS AND ANALYSIS: In an ongoing clinical feasibility study, participants with a confirmed PD diagnosis are being recruited. Participants perform activity tests, including Timed Up and Go (TUG), tremor, finger tapping, drawing and vocalisation, once a week for 2 months using the Mobistudy smartphone app in their homes. Concurrently, participants wear the GENEActiv wrist device for 28 days to measure actigraphy continuously. In addition to using sensors, participants complete the Beck's Depression Inventory, Non-Motor Symptoms Questionnaire (NMSQuest) and Parkinson's Disease Questionnaire (PDQ-8) questionnaires at baseline, at 1 month and at the end of the study. Sleep disorders are assessed through the Parkinson's Disease Sleep Scale-2 questionnaire (weekly) and a custom sleep quality daily questionnaire. User experience questionnaires, Technology Acceptance Model and User Version of the Mobile Application Rating Scale, are delivered at 1 month. Clinical assessment (Movement Disorder Society-Unified Parkinson Disease Rating Scale (MDS-UPDRS)) is performed at enrollment and the 2-month follow-up visit. During visits, a TUG test is performed using the smartphone and the G-Walk motion sensor as reference device. Signal processing and machine learning techniques will be employed to analyse the data collected from Mobistudy app and the GENEActiv and correlate them with the MDS-UPDRS. Compliance and user aspects will be informing the long-term feasibility.

ETHICS AND DISSEMINATION: The study received ethical approval by the Swedish Ethical Review Authority (Etikprövningsmyndigheten), with application number 2022-02885-01. Results will be reported in peer-reviewed journals and conferences. Results will be shared with the study participants.

Ort, förlag, år, upplaga, sidor
BMJ Publishing Group Ltd, 2023. Vol. 13, nr 12, artikel-id e077766
Nyckelord [en]
health informatics, parkinson's disease, telemedicine
Nationell ämneskategori
Neurologi
Identifikatorer
URN: urn:nbn:se:mau:diva-64860DOI: 10.1136/bmjopen-2023-077766ISI: 001134943800008PubMedID: 38154904Scopus ID: 2-s2.0-85181165016OAI: oai:DiVA.org:mau-64860DiVA, id: diva2:1824861
Tillgänglig från: 2024-01-08 Skapad: 2024-01-08 Senast uppdaterad: 2024-03-07Bibliografiskt granskad

Open Access i DiVA

fulltext(977 kB)54 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 977 kBChecksumma SHA-512
3325908687df9e355f7bfebd8a4e4795a215bd8a3f2574f281a0d79095a2509893286ba329134fd22a6bbe92b5cb34ba7700559326042e4bdfbc7bf6c63aed12
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Ymeri, GentSalvi, DarioOlsson, Carl Magnus

Sök vidare i DiVA

Av författaren/redaktören
Ymeri, GentSalvi, DarioOlsson, Carl Magnus
Av organisationen
Internet of Things and People (IOTAP)Institutionen för datavetenskap och medieteknik (DVMT)
I samma tidskrift
BMJ Open
Neurologi

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 54 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 236 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf