Malmö University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Development of Wireless Biosensors Integrated into the Radio Frequency Antenna for Chipless and Battery-less Monitoring of Biological Reactions
Malmö University, Faculty of Health and Society (HS), Department of Biomedical Science (BMV). Malmö University, Biofilms Research Center for Biointerfaces.
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Development of wireless sensors and biosensors is currently experiencing a rapid progress with a substantial focus directed toward highlighting their potential applications as non-invasive wearables, implants, and highly mobile point-of-care devices. Integration of wireless biosensors into the Internet of Things (IoT) is widely acknowledged as a technological advancement with the potential to significantly change daily life. To maximize this potential, simple integration of biosensors with wireless communication elements would be advantageous. In this regard, systems functioning in chipless, and battery-less modes outperform integrated circuit (IC) based and battery-powered wireless biosensors. Nevertheless, the accessibility of these wireless designs is still limited. In this study, we present a novel approach where incorporating silver nanoparticles(AgNPs) as a part of the radio frequency (RF) tag antenna enables the realization of simple, chipless, and battery-less wireless sensing of biological oxidation and reduction reactions. We exemplified the mechanism of operation in such systems by electronic wiring of enzymes through direct electron transfer (DET) and microorganisms through mediated electron transfer (MET) to the redox conversion of Ag/AgCl. The wiring was designed to facilitate the transformation of metallic AgNPs into AgCl (Ag → AgCl) or the conversion of AgCl particles back into metallic AgNPs (AgCl → Ag) when the enzymatic/microorganism based electron transfer reactions were present. These reactions occurring on the biosensor RF tag antenna strongly changed the impedance of the tag, which was wirelessly monitored by a radio frequency identification (RFID) reader. The functionality of the proposed setup in direct electron transfer coupling of the enzymatic reactions to the redox conversion of the Ag/AgCl was demonstrated by wireless detection of glucose in whole blood samples and hydrogen peroxide penetrated through the skin membrane using the enzymes glucose dehydrogenase(GDH) and horseradish peroxidase (HRP). Additionally, the capability of the proposed configuration in mediated electron transfer wiring of microorganisms to the Ag/AgCl electrochemistry was shown by wireless monitoring of medically relevant microbial biofilms in simulated wound fluid. Generalizing, the results of this work, for the first time, demonstrated that exploiting Ag/AgCl as a part of the tag antenna allows simple, chipless, and battery-less wireless sensing of biological oxidation and reduction reactions.

Place, publisher, year, edition, pages
Malmö: Malmö University Press, 2023. , p. 108
Series
Malmö University Health and Society Dissertations, ISSN 1653-5383 ; 99
National Category
Chemical Sciences Engineering and Technology Medical Biotechnology
Identifiers
URN: urn:nbn:se:mau:diva-63289DOI: 10.24834/isbn.9789178774128ISBN: 9789178774111 (print)ISBN: 9789178774128 (electronic)OAI: oai:DiVA.org:mau-63289DiVA, id: diva2:1808301
Public defence
2023-10-27, AS: E002, Faculty of Health and Society, 09:15
Opponent
Supervisors
Note

Paper IV in dissertation as manuscript.

Available from: 2023-10-31 Created: 2023-10-30 Last updated: 2024-02-27Bibliographically approved
List of papers
1. Glucose-to-Resistor Transduction Integrated into a Radio-Frequency Antenna for Chip-less and Battery-less Wireless Sensing
Open this publication in new window or tab >>Glucose-to-Resistor Transduction Integrated into a Radio-Frequency Antenna for Chip-less and Battery-less Wireless Sensing
Show others...
2022 (English)In: ACS Sensors, E-ISSN 2379-3694, Vol. 7, no 4, p. 1222-1234Article in journal (Refereed) Published
Abstract [en]

To maximize the potential of 5G infrastructure in healthcare, simple integration of biosensors with wireless tag antennas would be beneficial. This work introduces novel glucose-to-resistor transduction, which enables simple, wireless biosensor design. The biosensor was realized on a near-field communication tag antenna, where a sensing bioanode generated electrical current and electroreduced a nonconducting antenna material into an excellent conductor. For this, a part of the antenna was replaced by a Ag nanoparticle layer oxidized to high-resistance AgCl. The bioanode was based on Au nanoparticle-wired glucose dehydrogenase (GDH). The exposure of the cathode-bioanode to glucose solution resulted in GDH-catalyzed oxidation of glucose at the bioanode with a concomitant reduction of AgCl to highly conducting Ag on the cathode. The AgCl-to-Ag conversion strongly affected the impedance of the antenna circuit, allowing wireless detection of glucose. Mimicking the final application, the proposed wireless biosensor was ultimately evaluated through the measurement of glucose in whole blood, showing good agreement with the values obtained with a commercially available glucometer. This work, for the first time, demonstrates that making a part of the antenna from the AgCl layer allows achieving simple, chip-less, and battery-less wireless sensing of enzyme-catalyzed reduction reaction. 

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2022
Keywords
Internet of Things, wireless detection of glucose, direct electron transfer, glucose dehydrogenase, chip-less wireless sensing
National Category
Analytical Chemistry
Identifiers
urn:nbn:se:mau:diva-51019 (URN)10.1021/acssensors.2c00394 (DOI)000794994500032 ()35392657 (PubMedID)2-s2.0-85128799436 (Scopus ID)
Funder
Swedish Research Council, 2018-04320Knowledge Foundation, 20170058Knowledge Foundation, 20190010
Available from: 2022-04-08 Created: 2022-04-08 Last updated: 2024-03-05Bibliographically approved
2. A Rapidly Responsive Sensor for Wireless Detection of Early and Mature Microbial Biofilms.
Open this publication in new window or tab >>A Rapidly Responsive Sensor for Wireless Detection of Early and Mature Microbial Biofilms.
Show others...
2023 (English)In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 62, no 40, article id e202308181Article in journal (Refereed) Published
Abstract [en]

Biofilm-associated infections, which are able to resist antibiotics, pose a significant challenge in clinical treatments. Such infections have been linked to various medical conditions, including chronic wounds and implant-associated infections, making them a major public-health concern. Early-detection of biofilm formation offers significant advantages in mitigating adverse effects caused by biofilms. In this work, we aim to explore the feasibility of employing a novel wireless sensor for tracking both early-stage and matured-biofilms formed by the medically relevant bacteria Staphylococcus aureus and Pseudomonas aeruginosa. The sensor utilizes electrochemical reduction of an AgCl layer bridging two silver legs made by inkjet-printing, forming a part of near-field-communication tag antenna. The antenna is interfaced with a carbon cloth designed to promote the growth of microorganisms, thereby serving as an electron source for reduction of the resistive AgCl into a highly-conductive Ag bridge. The AgCl-Ag transformation significantly alters the impedance of the antenna, facilitating wireless identification of an endpoint caused by microbial growth. To the best of our knowledge, this study for the first time presents the evidence showcasing that electrons released through the actions of bacteria can be harnessed to convert AgCl to Ag, thus enabling the wireless, battery-less, and chip-less early-detection of biofilm formation.

Place, publisher, year, edition, pages
John Wiley & Sons, 2023
Keywords
Microbial biofilm, chip-less wireless sensing, inkjet printing, mediated electron transfer, near field communication
National Category
Microbiology
Identifiers
urn:nbn:se:mau:diva-62039 (URN)10.1002/anie.202308181 (DOI)001090146000021 ()37490019 (PubMedID)2-s2.0-85168699269 (Scopus ID)
Available from: 2023-08-22 Created: 2023-08-22 Last updated: 2024-04-17Bibliographically approved
3. Franz cells for facile biosensor evaluation: A case of HRP/SWCNT-based hydrogen peroxide detection via amperometric and wireless modes
Open this publication in new window or tab >>Franz cells for facile biosensor evaluation: A case of HRP/SWCNT-based hydrogen peroxide detection via amperometric and wireless modes
Show others...
2021 (English)In: Biosensors & bioelectronics, ISSN 0956-5663, E-ISSN 1873-4235, Vol. 191, article id 113420Article in journal (Refereed) Published
Abstract [en]

Reducing animal use in biosensor research requires broader use of in vitro methods. In this work, we present a novel application of Franz cells suitable for biosensor development and evaluation in vitro. The work describes how Franz cell can be equipped with electrodes enabling characterization of biosensors in close proximity to skin. As an example of a sensor, hydrogen peroxide biosensor was prepared based on horseradish peroxidase (HRP)/single-walled carbon nanotube (SWCNT)-modified textile. The electrode exhibited lower detection limit of 0.3 μM and sensitivity of 184 μA mM−1 cm−2. The ability of this biosensor to monitor H2O2 penetration through skin and dialysis membranes was evaluated in Franz cell setup in amperometric and wireless modes. The results also show that catalase activity present in skin is a considerable problem for epidermal sensing of H2O2. This work highlights opportunities and obstacles that can be addressed by assessment of biosensors in Franz cell setup before progressing to their testing in animals and humans.

Place, publisher, year, edition, pages
Elsevier, 2021
Keywords
Epidermal sensing, Franz cell, Hydrogen peroxide biosensor, Skin membrane, Animals, Biosensors, Electrodes, Oxidation, Amperometric, H$-2$/O$-2$, Horse-radish peroxidase, Hydrogen peroxide biosensors, Hydrogen peroxide detections, In-vitro, Single-walled carbon, Hydrogen peroxide
National Category
Analytical Chemistry
Identifiers
urn:nbn:se:mau:diva-44657 (URN)10.1016/j.bios.2021.113420 (DOI)000685993400006 ()34182432 (PubMedID)2-s2.0-85108599982 (Scopus ID)
Available from: 2021-07-07 Created: 2021-07-07 Last updated: 2023-10-31Bibliographically approved
4. Electrogenicity of microbial biofilms of medically relevant microorganisms: potentiometric, amperometric and wireless detection.
Open this publication in new window or tab >>Electrogenicity of microbial biofilms of medically relevant microorganisms: potentiometric, amperometric and wireless detection.
Show others...
2024 (English)In: Biosensors & bioelectronics, ISSN 0956-5663, E-ISSN 1873-4235, Vol. 246, article id 115892Article in journal (Refereed) Published
Abstract [en]

Since the progression of biofilm formation is related to the success of infection treatment, detecting microbial biofilms is of great interest. Biofilms of Gram-positive Staphylococcus aureus and Streptococcus gordonii bacteria, Gram-negative Pseudomonas aeruginosa and Escherichia coli bacteria, and Candida albicans yeast were examined using potentiometric, amperometric, and wireless readout modes in this study. As a biofilm formed, the open circuit potential (OCP) of biofilm hosting electrode (bioanode) became increasingly negative. Depending on the microorganism, the OCP ranged from −70 to −250 mV. The co-culture generated the most negative OCP (−300 mV vs Ag/AgCl), while the single-species biofilm formed by E. coli developed the least negative (−70 mV). The OCP of a fungal biofilm formed by C. albicans was −100 mV. The difference in electrode currents generated by biofilms was more pronounced. The current density of the S. aureus biofilm was 0.9‧10−7 A cm−2, while the value of the P. aeruginosa biofilm was 1.3‧10−6 A cm−2. Importantly, a biofilm formed by a co-culture of S. aureus and P. aeruginosa had a slightly higher negative OCP value and current density than the most electrogenic P. aeruginosa single-species biofilm. We present evidence that bacteria can share redox mediators found in multi-species biofilms. This synergy, enabling higher current and OCP values of multi-species biofilm hosting electrodes, could be beneficial for electrochemical detection of infectious biofilms in clinics. We demonstrate that the electrogenic biofilm can provide basis to construct novel wireless, chip-free, and battery-free biofilm detection method.

Place, publisher, year, edition, pages
Elsevier, 2024
Keywords
Biofilm detection, Microbial biosensor, Open circuit potential, Wireless biosensor
National Category
Microbiology
Identifiers
urn:nbn:se:mau:diva-64686 (URN)10.1016/j.bios.2023.115892 (DOI)001135565500001 ()38056343 (PubMedID)2-s2.0-85178667875 (Scopus ID)
Available from: 2023-12-21 Created: 2023-12-21 Last updated: 2024-02-05Bibliographically approved

Open Access in DiVA

fulltext(16962 kB)456 downloads
File information
File name FULLTEXT01.pdfFile size 16962 kBChecksum SHA-512
2d9dd1338b2e2a354ba7bbe7e299b7593af04e18d09ab727794a2f3ab68e48fc2395a411db368723063dd08d7cb5c3238a36cfc9f7cbda7030faa598c85aa27b
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records

Shafaat, Atefeh

Search in DiVA

By author/editor
Shafaat, Atefeh
By organisation
Department of Biomedical Science (BMV)Biofilms Research Center for Biointerfaces
Chemical SciencesEngineering and TechnologyMedical Biotechnology

Search outside of DiVA

GoogleGoogle Scholar
Total: 459 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 800 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf