Publikationer från Malmö universitet
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
An Improved Skin Lesion Boundary Estimation for Enhanced-Intensity Images Using Hybrid Metaheuristics
Department of Electrical and Computer Engineering, Wah Campus, COMSATS University Islamabad, Wah Cantt 47040, Pakistan.ORCID-id: 0000-0001-9885-4423
Department of Electrical and Computer Engineering, Wah Campus, COMSATS University Islamabad, Wah Cantt 47040, Pakistan.ORCID-id: 0000-0003-4578-3849
Department of Electrical and Computer Engineering, Wah Campus, COMSATS University Islamabad, Wah Cantt 47040, Pakistan.ORCID-id: 0000-0003-3791-4140
Department of CS, HITEC University, Taxila 47080, Pakistan.ORCID-id: 0000-0002-6347-4890
Visa övriga samt affilieringar
2023 (Engelska)Ingår i: Diagnostics, ISSN 2075-4418, Vol. 13, nr 7, s. 1285-1285Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The demand for the accurate and timely identification of melanoma as a major skin cancer type is increasing daily. Due to the advent of modern tools and computer vision techniques, it has become easier to perform analysis. Skin cancer classification and segmentation techniques require clear lesions segregated from the background for efficient results. Many studies resolve the matter partly. However, there exists plenty of room for new research in this field. Recently, many algorithms have been presented to preprocess skin lesions, aiding the segmentation algorithms to generate efficient outcomes. Nature-inspired algorithms and metaheuristics help to estimate the optimal parameter set in the search space. This research article proposes a hybrid metaheuristic preprocessor, BA-ABC, to improve the quality of images by enhancing their contrast and preserving the brightness. The statistical transformation function, which helps to improve the contrast, is based on a parameter set estimated through the proposed hybrid metaheuristic model for every image in the dataset. For experimentation purposes, we have utilised three publicly available datasets, ISIC-2016, 2017 and 2018. The efficacy of the presented model is validated through some state-of-the-art segmentation algorithms. The visual outcomes of the boundary estimation algorithms and performance matrix validate that the proposed model performs well. The proposed model improves the dice coefficient to 94.6% in the results.

Ort, förlag, år, upplaga, sidor
MDPI, 2023. Vol. 13, nr 7, s. 1285-1285
Nyckelord [en]
deep learning, machine learning, bat algorithm, artificial bee colony, computer vision, skin lesion segmentation
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:mau:diva-62888DOI: 10.3390/diagnostics13071285ISI: 000969858600001Scopus ID: 2-s2.0-85152653391OAI: oai:DiVA.org:mau-62888DiVA, id: diva2:1801399
Tillgänglig från: 2023-10-01 Skapad: 2023-10-01 Senast uppdaterad: 2023-10-06Bibliografiskt granskad

Open Access i DiVA

fulltext(818 kB)12 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 818 kBChecksumma SHA-512
abf613aa903fa95b5c0fcc642b47189f96932f8a62db0d1388b479c2dde29c29a465a108851fb77ae21b9dac4f75de2bea982b33a93ae1bda0a15de519eefe25
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Person

Malik, Shairyar

Sök vidare i DiVA

Av författaren/redaktören
Malik, ShairyarAkram, TallhaAwais, MuhammadKhan, Muhammad AttiqueHadjouni, MyriamElmannai, HelaMarzougui, MehrezTariq, Usman
I samma tidskrift
Diagnostics
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 12 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 50 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf