Publikationer från Malmö universitet
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Snapshot-Stacked Ensemble and Optimization Approach for Vehicle Breakdown Prediction
Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP). Halmstad Univ, Ctr Appl Intelligent Syst Res CAISR, S-30118 Halmstad, Sweden..ORCID-id: 0000-0002-3797-4605
Qom Univ Technol, Fac Elect & Comp Engn, Qom 151937195, Iran..
Halmstad Univ, Ctr Appl Intelligent Syst Res CAISR, S-30118 Halmstad, Sweden..
Univ New Brunswick UNB, Canadian Inst Cybersecur CIC, Fredericton, NB E3B 9W4, Canada..
Visa övriga samt affilieringar
2023 (Engelska)Ingår i: Sensors, E-ISSN 1424-8220, Vol. 23, nr 12, artikel-id 5621Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Predicting breakdowns is becoming one of the main goals for vehicle manufacturers so as to better allocate resources, and to reduce costs and safety issues. At the core of the utilization of vehicle sensors is the fact that early detection of anomalies facilitates the prediction of potential breakdown issues, which, if otherwise undetected, could lead to breakdowns and warranty claims. However, the making of such predictions is too complex a challenge to solve using simple predictive models. The strength of heuristic optimization techniques in solving np-hard problems, and the recent success of ensemble approaches to various modeling problems, motivated us to investigate a hybrid optimization- and ensemble-based approach to tackle the complex task. In this study, we propose a snapshot-stacked ensemble deep neural network (SSED) approach to predict vehicle claims (in this study, we refer to a claim as being a breakdown or a fault) by considering vehicle operational life records. The approach includes three main modules: Data pre-processing, Dimensionality Reduction, and Ensemble Learning. The first module is developed to run a set of practices to integrate various sources of data, extract hidden information and segment the data into different time windows. In the second module, the most informative measurements to represent vehicle usage are selected through an adapted heuristic optimization approach. Finally, in the last module, the ensemble machine learning approach utilizes the selected measurements to map the vehicle usage to the breakdowns for the prediction. The proposed approach integrates, and uses, the following two sources of data, collected from thousands of heavy-duty trucks: Logged Vehicle Data (LVD) and Warranty Claim Data (WCD). The experimental results confirm the proposed system's effectiveness in predicting vehicle breakdowns. By adapting the optimization and snapshot-stacked ensemble deep networks, we demonstrate how sensor data, in the form of vehicle usage history, contributes to claim predictions. The experimental evaluation of the system on other application domains also indicated the generality of the proposed approach.

Ort, förlag, år, upplaga, sidor
MDPI, 2023. Vol. 23, nr 12, artikel-id 5621
Nyckelord [en]
breakdown prediction, optimization, deep neural networks, ensemble learning
Nationell ämneskategori
Farkostteknik
Identifikatorer
URN: urn:nbn:se:mau:diva-61954DOI: 10.3390/s23125621ISI: 001015804000001PubMedID: 37420787Scopus ID: 2-s2.0-85163933766OAI: oai:DiVA.org:mau-61954DiVA, id: diva2:1788878
Tillgänglig från: 2023-08-17 Skapad: 2023-08-17 Senast uppdaterad: 2023-08-22Bibliografiskt granskad

Open Access i DiVA

fulltext(3977 kB)28 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 3977 kBChecksumma SHA-512
d51cbee3aa17c908c8cb488a8c33e9c36153e524d3c90a4c5cd14a010b7094b351eead81a6c5d4f8f572476e177dc096dd4f3352aba9bb1ef387785e35325c02
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Khoshkangini, Reza

Sök vidare i DiVA

Av författaren/redaktören
Khoshkangini, Reza
Av organisationen
Institutionen för datavetenskap och medieteknik (DVMT)Internet of Things and People (IOTAP)
I samma tidskrift
Sensors
Farkostteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 28 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 49 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf