Malmö University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effects of storage conditions on permeability and electrical impedance properties of the skin barrier.
Malmö University, Faculty of Health and Society (HS), Department of Biomedical Science (BMV). Malmö University, Biofilms Research Center for Biointerfaces.ORCID iD: 0000-0001-8720-3705
Zelmic AB, Lund, Sweden.
Malmö University, Biofilms Research Center for Biointerfaces. Malmö University, Faculty of Health and Society (HS), Department of Biomedical Science (BMV).ORCID iD: 0000-0003-0304-7528
Malmö University, Faculty of Health and Society (HS), Department of Biomedical Science (BMV). Malmö University, Biofilms Research Center for Biointerfaces.
Show others and affiliations
2023 (English)In: International Journal of Pharmaceutics, ISSN 0378-5173, E-ISSN 1873-3476, Vol. 637, p. 122891-, article id 122891Article in journal (Refereed) Published
Abstract [en]

The aim of this study was to investigate the effect of various skin preservation protocols on in vitro drug permeation, epidermal-dermal drug distribution, and electrical impedance properties of skin membranes. Acyclovir (AC) and methyl salicylate (MS) were selected as model drugs due to their different physicochemical properties and skin metabolic profiles. In particular, AC is relatively hydrophilic (logP -1.8) and not expected to be affected by skin metabolism, while MS is relatively lipophilic (logP 2.5) and susceptible to metabolism, being a substrate for esterase residing in skin. Skin from pig ears was used and freshly excised into split-thickness membranes, which were divided and immediately stored at five different storage conditions: a) 4 °C overnight (fresh control), b) 4 °C for 4 days, c) and d) -20 °C for 6 weeks and one year, respectively, and e) -80 °C for 6 weeks. Based on the combined results, general trends are observed showing that fresh skin is associated with lower permeation of both model drugs and higher skin membrane electrical resistance, as compared to the other storage conditions. Interestingly, in the case of fresh skin, significantly lower amounts of MS are detected in the epidermis and dermis compartments, implying higher levels of ester hydrolysis of MS (i.e., higher esterase activity). In line with this, the concentration of salicylic acid (SA) extracted from the dermis is significantly higher for fresh skin, as compared to the other storage conditions. Nevertheless, for all storage conditions, substantial amounts of SA are detected in the receptor medium, as well as in the epidermis and dermis, implying that esterase activity is maintained to some extent in all cases. For AC, which is not expected to be affected by skin metabolism, freeze storage (protocols c-e) is observed to result in higher accumulation of AC in the epidermis, as compared to the case of fresh skin, while the AC concentration in dermis is unaffected. These observations can be rationalized primarily by the observed lower permeability of fresh skin towards this hydrophilic substance. Finally, a strong correlation between AC permeation and electrical skin resistance is shown for individual skin membranes irrespective of storage condition, while the corresponding correlation for MS is inferior. On the other hand, a strong correlation is shown for individual membranes between MS permeation and electrical skin capacitance, while a similar correlation for AC is lower. The observed correlations between drug permeability and electrical impedance open up for standardizing in vitro data for improved analysis and comparisons between permeability results obtained with skin stored at different conditions.

Place, publisher, year, edition, pages
Elsevier, 2023. Vol. 637, p. 122891-, article id 122891
National Category
Dermatology and Venereal Diseases
Identifiers
URN: urn:nbn:se:mau:diva-59303DOI: 10.1016/j.ijpharm.2023.122891ISI: 000970186500001PubMedID: 36997077Scopus ID: 2-s2.0-85151485213OAI: oai:DiVA.org:mau-59303DiVA, id: diva2:1751982
Available from: 2023-04-20 Created: 2023-04-20 Last updated: 2023-07-04Bibliographically approved

Open Access in DiVA

fulltext(867 kB)159 downloads
File information
File name FULLTEXT01.pdfFile size 867 kBChecksum SHA-512
c0aef5aa6fc6bb2d34c4712b7a1457392cbfe36d866764e560028c0eeb249a9d97374e7d94e6fa2b864bbc3fd98060e6c3f9a245b990f574b8739690912c5550
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMedScopus

Authority records

Morin, MaximRuzgas, TautgirdasEngblom, JohanBjörklund, Sebastian

Search in DiVA

By author/editor
Morin, MaximRuzgas, TautgirdasEngblom, JohanBjörklund, Sebastian
By organisation
Department of Biomedical Science (BMV)Biofilms Research Center for Biointerfaces
In the same journal
International Journal of Pharmaceutics
Dermatology and Venereal Diseases

Search outside of DiVA

GoogleGoogle Scholar
Total: 159 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 278 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf