Malmö University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Portable Prussian Blue-Based Sensor for Bacterial Detection in Urine
Malmö University, Faculty of Health and Society (HS), Department of Biomedical Science (BMV). Aptusens AB, S-29394 Kyrkhult, Sweden..
Malmö University, Faculty of Health and Society (HS), Department of Biomedical Science (BMV). Malmö University, Biofilms Research Center for Biointerfaces.
Malmö University, Faculty of Health and Society (HS), Department of Biomedical Science (BMV). Malmö University, Biofilms Research Center for Biointerfaces.
Malmö University, Biofilms Research Center for Biointerfaces. Malmö University, Faculty of Health and Society (HS), Department of Biomedical Science (BMV).ORCID iD: 0000-0001-6937-3057
Show others and affiliations
2023 (English)In: Sensors, E-ISSN 1424-8220, Vol. 23, no 1, article id 388Article in journal (Refereed) Published
Abstract [en]

Bacterial infections can affect the skin, lungs, blood, and brain, and are among the leading causes of mortality globally. Early infection detection is critical in diagnosis and treatment but is a time- and work-consuming process taking several days, creating a hitherto unmet need to develop simple, rapid, and accurate methods for bacterial detection at the point of care. The most frequent type of bacterial infection is infection of the urinary tract. Here, we present a wireless-enabled, portable, potentiometric sensor for E. coli. E. coli was chosen as a model bacterium since it is the most common cause of urinary tract infections. The sensing principle is based on reduction of Prussian blue by the metabolic activity of the bacteria, detected by monitoring the potential of the sensor, transferring the sensor signal via Bluetooth, and recording the output on a laptop or a mobile phone. In sensing of bacteria in an artificial urine medium, E. coli was detected in similar to 4 h (237 +/- 19 min; n = 4) and in less than 0.5 h (21 +/- 7 min, n = 3) using initial E. coli concentrations of similar to 10(3) and 10(5) cells mL(-1), respectively, which is under or on the limit for classification of a urinary tract infection. Detection of E. coli was also demonstrated in authentic urine samples with bacteria concentration as low as 10(4) cells mL(-1), with a similar response recorded between urine samples collected from different volunteers as well as from morning and afternoon urine samples.

Place, publisher, year, edition, pages
MDPI, 2023. Vol. 23, no 1, article id 388
Keywords [en]
portable sensing, bacterial detection, Prussian blue, urine analysis
National Category
Analytical Chemistry
Identifiers
URN: urn:nbn:se:mau:diva-58385DOI: 10.3390/s23010388ISI: 000908806900001PubMedID: 36616986Scopus ID: 2-s2.0-85145976536OAI: oai:DiVA.org:mau-58385DiVA, id: diva2:1739776
Available from: 2023-02-27 Created: 2023-02-27 Last updated: 2024-02-05Bibliographically approved
In thesis
1. Electrochemical (bio-)sensors operating in human physiological fluids
Open this publication in new window or tab >>Electrochemical (bio-)sensors operating in human physiological fluids
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis is focused on developing electrochemical (bio-)sensors specifically designed to detect biomolecules and bacteria in human physiological fluids. A more comprehensive understanding of their performance can be obtained by exposing the sensors to real human physiological fluids. Thus, four biosensors were designed and tested in saliva, plasma, blood, and urine. Specifically, a voltammetric electronic tongue, integrating six different electrode materials, was developed to qualitatively assess SARS-CoV-2 in saliva samples using principal component analysis. A tubular enzyme-based sensor utilizing incorporated cellobiose dehydrogenase in an Os(bpy)PVI redox polymer was employed for continuous glucose sensing in human plasma and undiluted whole blood under homeostatic conditions. Two different sensing concepts were developed for the label-free detection of bacteria (Escherichia coli, Enterococcus faecalis, and Klebsiella pneumoniae) in artificial urine and human urine based on metabolic activity due to bacterial growth. The first sensor enabled continuous bacterial detection by reducing Prussian Blue deposited on screen-printed electrodes with wireless data transfer. The second bacterial-sensitive sensor utilized electrochemical characterization to identify three bacteria types based on artificial urine metabolic changes. For a qualitative investigation of the metabolic changes, nuclear magnetic resonance was utilized, and flow cytometry was used to quantify and correlate bacterial growth with electrochemistry. Multivariate statistical data analysis was applied to distinguish bacteria-free and bacteria-infected artificial urine. Finally, an overview of the recent advances in the field of non-invasive electrochemical biosensors operating in secreted human physiological fluids, viz., tears, sweat, saliva, and urine, was given.

Abstract [sv]

Denna avhandling är inriktad på utveckling av elektrokemiska (bio-)sensorer som är särskilt utformade för detektering av biomolekyler och bakterier i mänskliga fysiologiska vätskor. Genom att undersöka sensorerna i verkliga mänskliga fysiologiska vätskor, kan man få en mer omfattande förståelse för deras prestanda. Fyra olika biosensorer har utformats och testats i saliv, plasma, blod och urin. En voltammetrisk elektronisk tunga, som integrerar sex olika elektrodmaterial, utvecklades för kvalitativ bedömning av SARS-CoV-2 i salivprover med hjälp av principalkomponentanalys. En rörformad enzymbaserad sensor som använder inkorporerat Cellobiose Dehydrogenase i en Os(bpy)PVI redoxpolymer användes för kontinuerlig glukosmätning i humant plasma och outspätt helblod under homeostatiska förhållanden. Dessutom utvecklades två olika sensorkoncept för märkningsfri detektion av bakterier (Escherichia coli, Enterococcus faecalis och Klebsiella pneumoniae) i artificiell urin och humanurin baserat på metabolisk aktivitet till följd av bakterietillväxt. Den första sensorn möjliggjorde kontinuerlig bakteriedetektion genom reduktion av preussiskt blått elektroder med trådlös dataöverföring. Den andra bakteriekänsliga sensorn använde elektrokemisk karakterisering för att identifiera tre typer av bakterier baserat på metaboliska förändringar i artificiell urin. För en kvalitativ undersökning av de metaboliska förändringarna användes dessutom nukleär magnetisk resonans och flödescytometri för att kvantifiera och korrelera bakterietillväxt med elektrokemi. Multivariat statistisk dataanalys användes för att skilja mellan bakteriefri och bakterieinfekterad (artificiell) urin. Slutligen gavs en översikt över de senaste framstegen inom området för icke-invasiva elektrokemiska biosensorer som arbetar i utsöndrade mänskliga fysiologiska vätskor, dvs. tårar, svett, saliv och urin.

Abstract [de]

Diese Arbeit fokussiert sich auf die Entwicklung elektrochemischer (Bio-)Sensoren, die speziell für den Nachweis von Biomolekülen und Bakterien inmenschlichen physiologischen Flüssigkeiten konzipiert sind. Indem die Sensorenhumanen, physiologischen Flüssigkeiten ausgesetzt werden, kann einumfassenderes Verständnis ihrer Funktionalität gewonnen werden. Im Einzelnenwurden vier verschiedene Biosensoren entwickelt und in Speichel, Plasma, Blutund Urin getestet. Für die qualitative Bewertung von SARS-CoV-2 inSpeichelproben unter Verwendung der Hauptkomponentenanalyse wurde einevoltammetrische „elektronische Zunge“, die sechs verschiedeneElektrodenmaterialien integriert, entwickelt. Zur kontinuierlichenGlukosemessung in menschlichem Plasma und unverdünntem Vollblut unterhomöostatischen Bedingungen wurden tubuläre enzymbasierte Sensorenverwendet, die die eingebaute Cellobiose-Dehydrogenase in einem Os (bpy) -PVI-Redoxpolymer verwenden. Darüber hinaus wurden zwei verschiedeneSensorkonzepte für den Nachweis von Bakterien (Escherichia coli, Enterococcusfaecalis und Klebsiella pneumoniae) in synthetischem und menschlichem Urinentwickelt, basierend auf der Stoffwechselaktivität während bakteriellemWachstum. Der erste Sensor ermöglichte einen kontinuierlichen Nachweis vonBakterien durch die Reduktion von „Prussian Blue“-Elektroden mit drahtloserDatenübertragung. Der zweite Sensor nutzte eine voltammetrische „elektronischeZunge“ zur Identifizierung von drei Bakterientypen aufgrund von spezifischen,metabolischen Veränderungen in synthetischem Urin. Zur qualitativenUntersuchung dieser Veränderungen wurde die Kernspinresonanz eingesetzt. DieDurchflusszytometrie diente zur Quantifizierung und Korrelation desBakterienwachstums mit der Elektrochemie, wobei multivariate statistischeDatenanalysen zur Unterscheidung von bakterienfreiem und bakterieninfiziertem(synthetischen) Urin eingesetzt wurden. Abschließend wurde ein Überblick überdie aktuellen Fortschritte auf dem Gebiet der nicht-invasiven elektrochemischenBiosensoren gegeben, die mit den physiologischen Flüssigkeiten des Menschen,d. h. in Tränen, Schweiß, Speichel und Urin, arbeiten. 

Place, publisher, year, edition, pages
Malmö: Malmö university Press, 2023. p. 74
Series
Malmö University Health and Society Dissertations, ISSN 1653-5383, E-ISSN 2004-9277 ; 2023:3
Keywords
biosensor, bacteria, enzyme, sensor, physiological fluid
National Category
Analytical Chemistry Microbiology in the medical area
Identifiers
urn:nbn:se:mau:diva-63045 (URN)10.24834/isbn.9789178773992 (DOI)978-91-7877-398-5 (ISBN)978-91-7877-399-2 (ISBN)
Public defence
2023-09-22, Aulan, Jan Waldenströms gata 25, 14:00 (English)
Opponent
Supervisors
Note

Paper V in dissertation as Manuscript with title "Electrochemical characterization of bacteria-infected artificial urine using an electronic tongue approach"

Available from: 2023-10-10 Created: 2023-10-09 Last updated: 2024-05-24Bibliographically approved

Open Access in DiVA

fulltext(1773 kB)121 downloads
File information
File name FULLTEXT01.pdfFile size 1773 kBChecksum SHA-512
d9bdda8a8b19553670ca1c2e16e9ec9e1ba93d4b641d2631082ae99efc606135c497f3b7401c129bdcdd1d67b0cf40b097c674de0c0c57395bc7002426838b9e
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMedScopus

Authority records

Psotta, CarolinChaturvedi, VivekGonzalez-Martinez, Juan FSotres, JavierFalk, Magnus

Search in DiVA

By author/editor
Psotta, CarolinChaturvedi, VivekGonzalez-Martinez, Juan FSotres, JavierFalk, Magnus
By organisation
Department of Biomedical Science (BMV)Biofilms Research Center for Biointerfaces
In the same journal
Sensors
Analytical Chemistry

Search outside of DiVA

GoogleGoogle Scholar
Total: 122 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 205 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf