Publikationer från Malmö universitet
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Engineering AI Systems: A Research Agenda
Chalmers University of Technology, Sweden.ORCID-id: 0000-0003-2854-722X
Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).ORCID-id: 0000-0002-7700-1816
Chalmers University of Technology, Sweden.
2021 (Engelska)Ingår i: Artificial Intelligence Paradigms for Smart Cyber-Physical Systems / [ed] Ashish Kumar Luhach; Atilla Elçi, IGI Global, 2021, s. 1-19Kapitel i bok, del av antologi (Refereegranskat)
Abstract [en]

Artificial intelligence (AI) and machine learning (ML) are increasingly broadly adopted in industry. However, based on well over a dozen case studies, we have learned that deploying industry-strength, production quality ML models in systems proves to be challenging. Companies experience challenges related to data quality, design methods and processes, performance of models as well as deployment and compliance. We learned that a new, structured engineering approach is required to construct and evolve systems that contain ML/DL components. In this chapter, the authors provide a conceptualization of the typical evolution patterns that companies experience when employing ML as well as an overview of the key problems experienced by the companies that they have studied. The main contribution of the chapter is a research agenda for AI engineering that provides an overview of the key engineering challenges surrounding ML solutions and an overview of open items that need to be addressed by the research community at large.

Ort, förlag, år, upplaga, sidor
IGI Global, 2021. s. 1-19
Nationell ämneskategori
Programvaruteknik
Identifikatorer
URN: urn:nbn:se:mau:diva-56850DOI: 10.4018/978-1-7998-5101-1.ch001Scopus ID: 2-s2.0-85137510970ISBN: 9781799851011 (tryckt)ISBN: 9781799851028 (digital)OAI: oai:DiVA.org:mau-56850DiVA, id: diva2:1721040
Tillgänglig från: 2022-12-20 Skapad: 2022-12-20 Senast uppdaterad: 2024-02-05Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Olsson, Helena Holmström

Sök vidare i DiVA

Av författaren/redaktören
Bosch, JanOlsson, Helena Holmström
Av organisationen
Institutionen för datavetenskap och medieteknik (DVMT)
Programvaruteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 36 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf