Publikationer från Malmö universitet
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Challenges in developing and deploying AI in the engineering, procurement and construction industry
McDermott, Dept Elect & Instrumentat Control & Safety Syst, The Hague, Netherlands..
Chalmers Univ Technol, Dept Comp Sci & Engn, Gothenburg, Sweden..
Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).ORCID-id: 0000-0002-7700-1816
2022 (Engelska)Ingår i: 2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC) / [ed] Leong, HV Sarvestani, SS Teranishi, Y Cuzzocrea, A Kashiwazaki, H Towey, D Yang, JJ Shahriar, H, IEEE , 2022, s. 1070-1075Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

AI in the Engineering, Procurement and Construction (EPC) industry has not yet a proven track record in large-scale projects. Since AI solutions for industrial applications became available only recently, deployment experience and lessons learned are still to be built up. Several research papers exist describing the potential of AI, and many surveys and white papers have been published indicating the challenges of AI deployment in the EPC industry. However, there is a recognizable shortage of in-depth studies of deployment experience in academic literature, particularly those focusing on the experiences of EPC companies involved in large-scale project execution with high safety standards, such as the petrochemical or energy sector. The novelty of this research is that we explore in detail the challenges and obstacles faced in developing and deploying AI in a large-scale project in the EPC industry based on real-life use cases performed in an EPC company. Those identified challenges are not linked to specific technology or a company's know-how and, therefore, are universal. The findings in this paper aim to provide feedback to academia to reduce the gap between research and practice experience. They also help reveal the hidden stones when implementing AI solutions in the industry.

Ort, förlag, år, upplaga, sidor
IEEE , 2022. s. 1070-1075
Nyckelord [en]
Artificial Intelligence, Machine Learning, Deep Learning, innovation, engineering, procurement and construction (EPC) industry, AI in the EPC industry
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:mau:diva-55404DOI: 10.1109/COMPSAC54236.2022.00167ISI: 000855983300159Scopus ID: 2-s2.0-85136935504ISBN: 978-1-6654-8810-5 (tryckt)OAI: oai:DiVA.org:mau-55404DiVA, id: diva2:1704305
Konferens
46th Annual IEEE-Computer-Society International Computers, Software, and Applications Conference (COMPSAC) - Computers, Software, and Applications in an Uncertain World, JUN 27-JUL 01, 2022, ELECTR NETWORK
Tillgänglig från: 2022-10-17 Skapad: 2022-10-17 Senast uppdaterad: 2024-02-05Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Olsson, Helena Holmström

Sök vidare i DiVA

Av författaren/redaktören
Olsson, Helena Holmström
Av organisationen
Institutionen för datavetenskap och medieteknik (DVMT)
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 88 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf