Malmö University Publications
Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Micro-Level Simulation Model for Analyzing the Use of MSUs in Southern Sweden
Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT). Malmö University, Internet of Things and People (IOTAP).ORCID iD: 0000-0003-2769-4826
Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT). Malmö University, Internet of Things and People (IOTAP).
Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT). Malmö University, Internet of Things and People (IOTAP).
Region Skåne; Lund University.
2022 (English)In: Procedia Computer Science, E-ISSN 1877-0509, Vol. 198, p. 132-139Article in journal (Refereed) Published
Abstract [en]

A mobile stroke unit (MSU) is a special type of ambulance, where stroke patients can be diagnosed and provided intravenous treatment, hence allowing to cut down the time to treatment for stroke patients. We present a discrete event simulation (DES) model to study the potential benefits of using MSUs in the southern health care region of Sweden (SHR). We included the activities and actions used in the SHR for stroke patient transportation as events in the DES model, and we generated a synthetic set of stroke patients as input for the simulation model. In a scenario study, we compared two scenarios, including three MSUs each, with the current situation, having only regular ambulances. We also performed a sensitivity analysis to further evaluate the presented DES model. For both MSU scenarios, our simulation results indicate that the average time to treatment is expected to decrease for the whole region and for each municipality of SHR. For example, the average time to treatment in the SHR is reduced from 1.31h in the baseline scenario to 1.20h and 1.23h for the two MSU scenarios. In addition, the share of stroke patients who are expected to receive treatment within one hour is increased by a factor of about 3 for both MSU scenarios.

Place, publisher, year, edition, pages
Elsevier, 2022. Vol. 198, p. 132-139
Keywords [en]
Ischemic stroke; stroke transport; MSU; DES; time to treatment; stroke logistics
National Category
Computational Mathematics
Identifiers
URN: urn:nbn:se:mau:diva-54479DOI: 10.1016/j.procs.2021.12.220Scopus ID: 2-s2.0-85124617439OAI: oai:DiVA.org:mau-54479DiVA, id: diva2:1689151
Conference
11th International Conference on Current and Future Trends of Information and Communication Technologies in Healthcare (ICTH 2021) November 1-4, 2021, Leuven, Belgium
Available from: 2022-08-22 Created: 2022-08-22 Last updated: 2024-02-05Bibliographically approved
In thesis
1. On the Use of Simulation and Optimization for the Analysis and Planning of Prehospital Stroke Care
Open this publication in new window or tab >>On the Use of Simulation and Optimization for the Analysis and Planning of Prehospital Stroke Care
2022 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Immediate treatment is of extreme importance for stroke patients. However, providing fast enough treatment for stroke patients is far from trivial, mainly due to logistical challenges and difficulties in diagnosing the correct stroke type. One way to reduce the time to treatment is to use so-called Mobile Stroke Units (MSUs), which allows to diagnose and provide treatment for stroke patients already at the patient scene. A well-designed stroke transport policy is vital to improve the access to treatment for stroke patients. Simulation and mathematical optimization are useful approaches for assessing and optimizing stroke transport policies, without endangering the health of the patients.

The main purpose of this thesis is to contribute to improving the situation for stroke patients and to reducing the social impacts of stroke. The aim is to study how to use simulation and optimization to achieve improved analysis and planning of prehospital stroke care. In particular, we focus on assessing the potential use of MSUs in a geographic area. In this thesis, optimization is used to identify the optimal locations of MSUs, and simulation is used to assess different stroke transport policies, including MSU locations. The results of this thesis aim to support public health authorities when making decisions in the prehospital stroke care domain.

In order to fulfill the aim of this thesis, we develop and analyze a number of different simulation and optimization models. First, we propose a macro-level simulation model, an average time to treatment estimation model, used to estimate the expected time to treatment for different parts of a geographic region. Using the proposed model, we generate two different MSU scenarios to explore the potential benefits of employing MSUs in Sweden’s southern healthcare region (SHR).  

Second, we present an optimization model to identify the best placement of MSUs while making a trade-off between the efficiency and equity perspectives, providing maximum population coverage and equal service for all patients, respectively. The trade-off function used in the model makes use of the concepts of weighted average time to treatment to model efficiency and the time difference between the expected time to treatment for different geographical areas to model equity. In a scenario study applied in the SHR, we evaluate our optimization model by comparing the current situation with three MSU scenarios, including 1, 2, and 3 MSUs.

Third, we present a micro-level discrete event simulation model to assess stroke transport policies, including MSUs, allowing us to model the behaviors of individual entities, such as patients and emergency vehicles, over time. We generate a synthetic set of stroke patients using a Poisson distribution, used as input in a scenario study.

Finally, we present a modeling framework with reusable components, which aims to facilitate the construction of discrete event simulation models in the emergency medical services domain. The framework consists of a number of generic activities, which can be used to represent healthcare chains modeled in the form of flowcharts. As the framework includes activities and policies modeled on the general level, the framework can be used to create models only by providing input data and a care chain specification. We evaluate the framework by using it to build a model for simulating EMS activities related to the complex case of acute stroke.

Place, publisher, year, edition, pages
Malmö: Malmö universitet, 2022. p. 55
Series
Studies in Computer Science ; 21
Keywords
Stroke Transport Policies, EMS, Mobile Stroke Unit, MSU, Simulation, Optimization, Modeling Framework.
National Category
Engineering and Technology
Identifiers
urn:nbn:se:mau:diva-55489 (URN)10.24834/isbn.9789178773039 (DOI)978-91-7877-304-6 (ISBN)978-91-7877-303-9 (ISBN)
Presentation
2022-10-18, 13:00 (English)
Opponent
Supervisors
Note

Note: The papers are not included in the fulltext online.

Available from: 2022-10-25 Created: 2022-10-24 Last updated: 2024-02-26Bibliographically approved

Open Access in DiVA

fulltext(1162 kB)121 downloads
File information
File name FULLTEXT01.pdfFile size 1162 kBChecksum SHA-512
8073e18563208ab97b329d451042b0fea10b0d88168f2498af624302204358310454a45d67e96573ab916bfb8aafacde2ff69e05cf712d49d033a6b991605fb9
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Amouzad Mahdiraji, SaeidHolmgren, JohanMihailescu, Radu-Casian

Search in DiVA

By author/editor
Amouzad Mahdiraji, SaeidHolmgren, JohanMihailescu, Radu-Casian
By organisation
Department of Computer Science and Media Technology (DVMT)Internet of Things and People (IOTAP)
In the same journal
Procedia Computer Science
Computational Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 121 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 179 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf