Publikationer från Malmö universitet
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
MBOX: Designing a Flexible IoT Multimodal Learning Analytics System
Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).ORCID-id: 0000-0002-9278-8063
Univ Copenhagen, Dept Sci Educ, Copenhagen, Denmark..ORCID-id: 0000-0001-9454-0793
Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
2021 (engelsk)Inngår i: IEEE 21st International Conferenceon Advanced Learning TechnologiesICALT 2021 / [ed] Chang, M., Chen, NS., Sampson, DG., Tlili, A., IEEE, 2021, s. 122-126Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Multimodal Learning Analytics (MMLA) provides opportunities for understanding and supporting collaborative problem-solving. However, the implementation of MMLA systems is challenging due to the lack of scalable technologies and limited solutions for collecting data from group work. This paper proposes the Multimodal Box (MBOX), an IoT-based system for MMLA, allowing the collection and processing of multimodal data from collaborative learning tasks. MBOX investigates the development and design for an IoT focusing on small group work in real-world settings. Moreover, MBOX promotes adaptation to different learning environments and enables a better scaling of computational resources used within the learning context.

sted, utgiver, år, opplag, sider
IEEE, 2021. s. 122-126
Serie
IEEE International Conference on Advanced Learning Technologies, ISSN 2161-3761
Emneord [en]
Multimodal Learning Analytics, CSCL, IoT, Interaction Design, Human Social Signal Processing
HSV kategori
Identifikatorer
URN: urn:nbn:se:mau:diva-48140DOI: 10.1109/ICALT52272.2021.00044ISI: 000719352000038Scopus ID: 2-s2.0-85114887166ISBN: 978-1-6654-4106-3 (digital)OAI: oai:DiVA.org:mau-48140DiVA, id: diva2:1620225
Konferanse
IEEE 21st International Conference on Advanced Learning Technologies, 12–15 July 2021 Online
Tilgjengelig fra: 2021-12-15 Laget: 2021-12-15 Sist oppdatert: 2024-02-05bibliografisk kontrollert
Inngår i avhandling
1. Towards designing a flexible multimodal learning analytics system
Åpne denne publikasjonen i ny fane eller vindu >>Towards designing a flexible multimodal learning analytics system
2022 (engelsk)Licentiatavhandling, med artikler (Annet vitenskapelig)
sted, utgiver, år, opplag, sider
Malmö: Malmö universitet, 2022. s. 43
Serie
Studies in Computer Science ; 19
HSV kategori
Identifikatorer
urn:nbn:se:mau:diva-51502 (URN)10.24834/isbn.9789178772988 (DOI)978-91-7877-297-1 (ISBN)978-91-7877-298-8 (ISBN)
Veileder
Tilgjengelig fra: 2022-05-18 Laget: 2022-05-17 Sist oppdatert: 2022-11-07bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Ouhaichi, HamzaSpikol, DanielVogel, Bahtijar

Søk i DiVA

Av forfatter/redaktør
Ouhaichi, HamzaSpikol, DanielVogel, Bahtijar
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 151 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf