Publikationer från Malmö universitet
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Assessing the Effects of Interacting with MAP-Elites
Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).ORCID-id: 0000-0002-7738-1601
Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).ORCID-id: 0000-0003-3924-7484
Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).ORCID-id: 0000-0002-2644-2785
New York University.
2021 (Engelska)Ingår i: Proceedings of the seventeenth {AAAI} Conference on Artificial Intelligence and Interactive Digital Entertainment, Association for the Advancement of Artificial Intelligence , 2021, Vol. 17, s. 124-131Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

MAP-Elites has been successfully applied to the generation of game content and robot behaviors. However, its behavior and performance when interacted with in co-creative systems is underexplored. This paper analyzes the implications of synthetic interaction for the stability and adaptability of MAP-Elites in such scenarios. We use pre-recorded human-made level design sessions with the Interactive Constrained MAP-Elites (IC MAP-Elites). To analyze the effect of each edition step in the search space over time using different feature dimensions, we introduce Temporal Expressive Range Analysis (TERA). With TERAs, MAP-Elites is assessed in terms of its adaptability and stability to generate diverse and high-performing individuals. Our results show that interactivity, in the form of design edits and MAP-Elites adapting towards them, directs the search process to previously unexplored areas of the fitness landscape and points towards how this could improve and enrich the co-creative process with quality-diverse individuals.

Ort, förlag, år, upplaga, sidor
Association for the Advancement of Artificial Intelligence , 2021. Vol. 17, s. 124-131
Serie
Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, ISSN 2326-909X, E-ISSN 2334-0924 ; 17:1
Nationell ämneskategori
Datavetenskap (datalogi) Människa-datorinteraktion (interaktionsdesign)
Forskningsämne
Interaktionsdesign
Identifikatorer
URN: urn:nbn:se:mau:diva-47273ISBN: 978-1-57735-871-8 (tryckt)OAI: oai:DiVA.org:mau-47273DiVA, id: diva2:1617705
Konferens
Artificial Intelligence and Interactive Digital Entertainment (AIIDE), October 11–15, 2021, A Virtual Conference
Tillgänglig från: 2021-12-07 Skapad: 2021-12-07 Senast uppdaterad: 2022-12-07Bibliografiskt granskad
Ingår i avhandling
1. Exploring Game Design through Human-AI Collaboration
Öppna denna publikation i ny flik eller fönster >>Exploring Game Design through Human-AI Collaboration
2022 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Game design is a hard and multi-faceted task that intertwines different gameplay mechanics, audio, level, graphic, and narrative facets. Games' facets are developed in conjunction with others with a common goal that makes games coherent and interesting. These combinations result in plenty of games in diverse genres, which usually require a collaboration of a diverse group of designers. Collaborators can take different roles and support each other with their strengths resulting in games with unique characteristics. The multi-faceted nature of games and their collaborative properties and requirements make it an exciting task to use Artificial Intelligence (AI). The generation of these facets together requires a holistic approach, which is one of the most challenging tasks within computational creativity. Given the collaborative aspect of games, this thesis approaches their generation through Human-AI collaboration, specifically using a mixed-initiative co-creative (MI-CC) paradigm. This paradigm creates an interactive and collaborative scenario that leverages AI and human strengths with an alternating and proactive initiative to approach a task. However, this paradigm introduces several challenges, such as Human and AI goal alignment or competing properties.

In this thesis, game design and the generation of game facets by themselves and intertwined are explored through Human-AI collaboration. The AI takes a colleague's role with the designer, arising multiple dynamics, challenges, and opportunities. The main hypothesis is that AI can be incorporated into systems as a collaborator, enhancing design tools, fostering human creativity, and reducing workload. The challenges and opportunities that arise from this are explored, discussed, and approached throughout the thesis. As a result, multiple approaches and methods such as quality-diversity algorithms and designer modeling are proposed to generate game facets in tandem with humans, create a better workflow, enhance the interaction, and establish adaptive experiences.

Ort, förlag, år, upplaga, sidor
Malmö: Malmö universitet, 2022. s. 381
Serie
Studies in Computer Science ; 20
Nyckelord
Computer Games, Human-AI Collaboration, Mixed-Initiative, Procedural Content Generation, Quality Diversity, Computational Creativity
Nationell ämneskategori
Datavetenskap (datalogi) Människa-datorinteraktion (interaktionsdesign)
Forskningsämne
Interaktionsdesign
Identifikatorer
urn:nbn:se:mau:diva-54586 (URN)10.24834/isbn.9789178773084 (DOI)978-91-7877-307-7 (ISBN)978-91-7877-308-4 (ISBN)
Disputation
2022-09-27, Niagara hörsal C, Nordenskiöldsgatan 1, 21119, Malmö, 14:30 (Engelska)
Opponent
Handledare
Tillgänglig från: 2022-08-29 Skapad: 2022-08-27 Senast uppdaterad: 2022-12-08Bibliografiskt granskad

Open Access i DiVA

fulltext(5568 kB)154 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 5568 kBChecksumma SHA-512
2b5987e2b3e5a5ba2a34def595d7590652979d434f51fddc73019822b4be24ff1efd7772d91fcf3b684c30c44acc6240618dc30dc16ace850ca5174c6882fd2e
Typ fulltextMimetyp application/pdf

Övriga länkar

fulltext

Person

Alvarez, AlbertoFont, JoseDahlskog, Steve

Sök vidare i DiVA

Av författaren/redaktören
Alvarez, AlbertoFont, JoseDahlskog, Steve
Av organisationen
Institutionen för datavetenskap och medieteknik (DVMT)
Datavetenskap (datalogi)Människa-datorinteraktion (interaktionsdesign)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 154 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 82 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf