Publikationer från Malmö universitet
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Questgram [Qg]: Toward a Mixed-Initiative Quest Generation Tool
Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).ORCID-id: 0000-0002-7738-1601
Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).ORCID-id: 0000-0003-3924-7484
2021 (Engelska)Ingår i: Proceedings of the 16th International Conference on the Foundations of Digital Games, Association for Computing Machinery (ACM), 2021, s. 1-10, artikel-id 6Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Quests are a core element in many games, especially role-playing and adventure games, where quests drive the gameplay and story, engage the player in the game’s narrative, and in most cases, act as a bridge between different game elements. The automatic generation of quests and objectives is an interesting challenge since this can extend the lifetime of games such as in Skyrim, or can help create unique experiences such as in AI Dungeon. This work presents Questgram [Qg], a mixed-initiative prototype tool for creating quests using grammars combined in a mixed-initiative level design tool. We evaluated our tool quantitatively by assessing the generated quests and qualitatively through a small user study. Human designers evaluated the system by creating quests manually, automatically, and through mixed-initiative. Our results show the Questgram’s potential, which creates diverse, valid, and interesting quests using quest patterns. Likewise, it helps engage designers in the quest design process, fosters their creativity by inspiring them, and enhance the level generation facet of the Evolutionary Dungeon Designer with steps towards intertwining both level and quest design.

Ort, förlag, år, upplaga, sidor
Association for Computing Machinery (ACM), 2021. s. 1-10, artikel-id 6
Nyckelord [en]
Computer Games, Mixed-Initiative Co-Creative Design, Grammars, Quest Generation, Procedural Content Generation
Nationell ämneskategori
Människa-datorinteraktion (interaktionsdesign) Datavetenskap (datalogi)
Forskningsämne
Interaktionsdesign
Identifikatorer
URN: urn:nbn:se:mau:diva-47271DOI: 10.1145/3472538.3472544OAI: oai:DiVA.org:mau-47271DiVA, id: diva2:1617697
Konferens
Foundations of Digital Games, August 2021
Tillgänglig från: 2021-12-07 Skapad: 2021-12-07 Senast uppdaterad: 2022-12-07Bibliografiskt granskad
Ingår i avhandling
1. Exploring Game Design through Human-AI Collaboration
Öppna denna publikation i ny flik eller fönster >>Exploring Game Design through Human-AI Collaboration
2022 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Game design is a hard and multi-faceted task that intertwines different gameplay mechanics, audio, level, graphic, and narrative facets. Games' facets are developed in conjunction with others with a common goal that makes games coherent and interesting. These combinations result in plenty of games in diverse genres, which usually require a collaboration of a diverse group of designers. Collaborators can take different roles and support each other with their strengths resulting in games with unique characteristics. The multi-faceted nature of games and their collaborative properties and requirements make it an exciting task to use Artificial Intelligence (AI). The generation of these facets together requires a holistic approach, which is one of the most challenging tasks within computational creativity. Given the collaborative aspect of games, this thesis approaches their generation through Human-AI collaboration, specifically using a mixed-initiative co-creative (MI-CC) paradigm. This paradigm creates an interactive and collaborative scenario that leverages AI and human strengths with an alternating and proactive initiative to approach a task. However, this paradigm introduces several challenges, such as Human and AI goal alignment or competing properties.

In this thesis, game design and the generation of game facets by themselves and intertwined are explored through Human-AI collaboration. The AI takes a colleague's role with the designer, arising multiple dynamics, challenges, and opportunities. The main hypothesis is that AI can be incorporated into systems as a collaborator, enhancing design tools, fostering human creativity, and reducing workload. The challenges and opportunities that arise from this are explored, discussed, and approached throughout the thesis. As a result, multiple approaches and methods such as quality-diversity algorithms and designer modeling are proposed to generate game facets in tandem with humans, create a better workflow, enhance the interaction, and establish adaptive experiences.

Ort, förlag, år, upplaga, sidor
Malmö: Malmö universitet, 2022. s. 381
Serie
Studies in Computer Science ; 20
Nyckelord
Computer Games, Human-AI Collaboration, Mixed-Initiative, Procedural Content Generation, Quality Diversity, Computational Creativity
Nationell ämneskategori
Datavetenskap (datalogi) Människa-datorinteraktion (interaktionsdesign)
Forskningsämne
Interaktionsdesign
Identifikatorer
urn:nbn:se:mau:diva-54586 (URN)10.24834/isbn.9789178773084 (DOI)978-91-7877-307-7 (ISBN)978-91-7877-308-4 (ISBN)
Disputation
2022-09-27, Niagara hörsal C, Nordenskiöldsgatan 1, 21119, Malmö, 14:30 (Engelska)
Opponent
Handledare
Tillgänglig från: 2022-08-29 Skapad: 2022-08-27 Senast uppdaterad: 2022-12-08Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltexthttps://dl.acm.org/doi/10.1145/3472538.3472544

Person

Alvarez, AlbertoFont, Jose

Sök vidare i DiVA

Av författaren/redaktören
Alvarez, AlbertoFont, Jose
Av organisationen
Institutionen för datavetenskap och medieteknik (DVMT)
Människa-datorinteraktion (interaktionsdesign)Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 97 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf