Publikationer från Malmö universitet
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Active Machine Learning Adversarial Attack Detection in the User Feedback Process
Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).ORCID-id: 0000-0003-4071-4596
Uppsala Universitet. (Division of Scientific Computing, Department of Information Technology)
University of Tartu. (Delta Research Center, Data Systems Group)
Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).ORCID-id: 0000-0002-9471-8405
2021 (Engelska)Ingår i: IEEE Access, E-ISSN 2169-3536, E-ISSN 2169-3536, Vol. 9Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Modern Information and Communication Technology (ICT)-based applications utilize currenttechnological advancements for purposes of streaming data, as a way of adapting to the ever-changingtechnological landscape. Such efforts require providing accurate, meaningful, and trustworthy output fromthe streaming sensors particularly during dynamic virtual sensing. However, to ensure that the sensingecosystem is devoid of any sensor threats or active attacks, it is paramount to implement secure real-timestrategies. Fundamentally, real-time detection of adversarial attacks/instances during the User FeedbackProcess (UFP) is the key to forecasting potential attacks in active learning. Also, according to existingliterature, there lacks a comprehensive study that has a focus on adversarial detection from an activemachine learning perspective at the time of writing this paper. Therefore, the authors posit the importance ofdetecting adversarial attacks in active learning strategy. Attack in the context of this paper through a UFPThreat driven model has been presented as any action that exerts an alteration to the learning system ordata. To achieve this, the study employed ambient data collected from a smart environment human activityrecognition from (Continuous Ambient Sensors Dataset, CASA) with fully labeled connections, where weintentionally subject the Dataset to wrong labels as a targeted/manipulative attack (by a malevolent labeler)in the UFP, with an assumption that the user-labels were connected to unique identities. While the dataset’sfocus is to classify tasks and predict activities, our study gives a focus on active adversarial strategies froman information security point of view. Furthermore, the strategies for modeling threats have been presentedusing the Meta Attack Language (MAL) compiler for purposes adversarial detection. The findings fromthe experiments conducted have shown that real-time adversarial identification and profiling during the UFPcould significantly increase the accuracy during the learning process with a high degree of certainty and pavesthe way towards an automated adversarial detection and profiling approaches on the Internet of CognitiveThings (ICoT).

Ort, förlag, år, upplaga, sidor
IEEE, 2021. Vol. 9
Nyckelord [en]
Adversarial detection, user-feedback-process, active machine learning, monitoring industrial feedback.
Nationell ämneskategori
Elektroteknik och elektronik
Forskningsämne
Naturvetenskapernas didaktik
Identifikatorer
URN: urn:nbn:se:mau:diva-41020DOI: 10.1109/ACCESS.2021.3063002ISI: 000626493900001Scopus ID: 2-s2.0-85102241032OAI: oai:DiVA.org:mau-41020DiVA, id: diva2:1534896
Tillgänglig från: 2021-03-05 Skapad: 2021-03-05 Senast uppdaterad: 2024-02-05Bibliografiskt granskad

Open Access i DiVA

fulltext(3277 kB)374 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 3277 kBChecksumma SHA-512
3893092695e6a3b2ddca9cb33989b7255fa9e6b293a0c09d6aaddb9dc574447f3990c3beac888607c0e4d124cf22de58d2b44fb6e9db1a6fed83357952b49dbc
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Person

Kebande, Victor R.Persson, Jan A.

Sök vidare i DiVA

Av författaren/redaktören
Kebande, Victor R.Persson, Jan A.
Av organisationen
Institutionen för datavetenskap och medieteknik (DVMT)Internet of Things and People (IOTAP)
I samma tidskrift
IEEE Access
Elektroteknik och elektronik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 374 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 56 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf