Publikationer från Malmö universitet
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Active Machine Learning Adversarial Attack Detection in the User Feedback Process
Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP). Electrical and Space Engineering, Luleå University of Technology, Luleå, 971 87, Sweden.ORCID-id: 0000-0003-4071-4596
Uppsala Universitet. (Division of Scientific Computing, Department of Information Technology)
University of Tartu. (Delta Research Center, Data Systems Group)
Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).ORCID-id: 0000-0002-9471-8405
2021 (engelsk)Inngår i: IEEE Access, E-ISSN 2169-3536, E-ISSN 2169-3536, Vol. 9Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Modern Information and Communication Technology (ICT)-based applications utilize currenttechnological advancements for purposes of streaming data, as a way of adapting to the ever-changingtechnological landscape. Such efforts require providing accurate, meaningful, and trustworthy output fromthe streaming sensors particularly during dynamic virtual sensing. However, to ensure that the sensingecosystem is devoid of any sensor threats or active attacks, it is paramount to implement secure real-timestrategies. Fundamentally, real-time detection of adversarial attacks/instances during the User FeedbackProcess (UFP) is the key to forecasting potential attacks in active learning. Also, according to existingliterature, there lacks a comprehensive study that has a focus on adversarial detection from an activemachine learning perspective at the time of writing this paper. Therefore, the authors posit the importance ofdetecting adversarial attacks in active learning strategy. Attack in the context of this paper through a UFPThreat driven model has been presented as any action that exerts an alteration to the learning system ordata. To achieve this, the study employed ambient data collected from a smart environment human activityrecognition from (Continuous Ambient Sensors Dataset, CASA) with fully labeled connections, where weintentionally subject the Dataset to wrong labels as a targeted/manipulative attack (by a malevolent labeler)in the UFP, with an assumption that the user-labels were connected to unique identities. While the dataset’sfocus is to classify tasks and predict activities, our study gives a focus on active adversarial strategies froman information security point of view. Furthermore, the strategies for modeling threats have been presentedusing the Meta Attack Language (MAL) compiler for purposes adversarial detection. The findings fromthe experiments conducted have shown that real-time adversarial identification and profiling during the UFPcould significantly increase the accuracy during the learning process with a high degree of certainty and pavesthe way towards an automated adversarial detection and profiling approaches on the Internet of CognitiveThings (ICoT).

sted, utgiver, år, opplag, sider
IEEE, 2021. Vol. 9
Emneord [en]
Adversarial detection, user-feedback-process, active machine learning, monitoring industrial feedback.
HSV kategori
Forskningsprogram
Naturvetenskapernas didaktik
Identifikatorer
URN: urn:nbn:se:mau:diva-41020DOI: 10.1109/ACCESS.2021.3063002ISI: 000626493900001Scopus ID: 2-s2.0-85102241032OAI: oai:DiVA.org:mau-41020DiVA, id: diva2:1534896
Tilgjengelig fra: 2021-03-05 Laget: 2021-03-05 Sist oppdatert: 2024-06-17bibliografisk kontrollert

Open Access i DiVA

fulltext(3277 kB)404 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 3277 kBChecksum SHA-512
3893092695e6a3b2ddca9cb33989b7255fa9e6b293a0c09d6aaddb9dc574447f3990c3beac888607c0e4d124cf22de58d2b44fb6e9db1a6fed83357952b49dbc
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Person

Kebande, Victor R.Persson, Jan A.

Søk i DiVA

Av forfatter/redaktør
Kebande, Victor R.Persson, Jan A.
Av organisasjonen
I samme tidsskrift
IEEE Access

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 404 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 67 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf