Modern Information and Communication Technology (ICT)-based applications utilize currenttechnological advancements for purposes of streaming data, as a way of adapting to the ever-changingtechnological landscape. Such efforts require providing accurate, meaningful, and trustworthy output fromthe streaming sensors particularly during dynamic virtual sensing. However, to ensure that the sensingecosystem is devoid of any sensor threats or active attacks, it is paramount to implement secure real-timestrategies. Fundamentally, real-time detection of adversarial attacks/instances during the User FeedbackProcess (UFP) is the key to forecasting potential attacks in active learning. Also, according to existingliterature, there lacks a comprehensive study that has a focus on adversarial detection from an activemachine learning perspective at the time of writing this paper. Therefore, the authors posit the importance ofdetecting adversarial attacks in active learning strategy. Attack in the context of this paper through a UFPThreat driven model has been presented as any action that exerts an alteration to the learning system ordata. To achieve this, the study employed ambient data collected from a smart environment human activityrecognition from (Continuous Ambient Sensors Dataset, CASA) with fully labeled connections, where weintentionally subject the Dataset to wrong labels as a targeted/manipulative attack (by a malevolent labeler)in the UFP, with an assumption that the user-labels were connected to unique identities. While the dataset’sfocus is to classify tasks and predict activities, our study gives a focus on active adversarial strategies froman information security point of view. Furthermore, the strategies for modeling threats have been presentedusing the Meta Attack Language (MAL) compiler for purposes adversarial detection. The findings fromthe experiments conducted have shown that real-time adversarial identification and profiling during the UFPcould significantly increase the accuracy during the learning process with a high degree of certainty and pavesthe way towards an automated adversarial detection and profiling approaches on the Internet of CognitiveThings (ICoT).