Malmö University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Aluminium adjuvants in vaccines: A way to modulate the immune response
Malmö University, Faculty of Health and Society (HS), Department of Biomedical Science (BMV).
Malmö University, Faculty of Health and Society (HS), Department of Biomedical Science (BMV).ORCID iD: 0000-0003-0769-9988
2021 (English)In: Seminars in Cell and Developmental Biology, ISSN 1084-9521, E-ISSN 1096-3634, Vol. 115, p. 3-9, article id S1084-9521(20)30202-0Article in journal (Refereed) Published
Abstract [en]

Aluminium salts have been used as adjuvants in vaccines for almost a century, but still no clear understanding of the mechanisms behind the immune stimulating properties of aluminium based adjuvants is recognized. Aluminium adjuvants consist of aggregates and upon administration of a vaccine, the aggregates will be recognized and phagocytosed by sentinel cells such as macrophages or dendritic cells. The adjuvant aggregates will persist intracellularly, maintaining a saturated intracellular concentration of aluminium ions over an extended time. Macrophages and dendritic cells are pivotal cells of the innate immune system, linking the innate and adaptive immune systems, and become inflammatory and antigen-presenting upon activation, thus mediating the initiation of the adaptive immune system. Both types of cell are highly adaptable, and this review will discuss and highlight how the occurrence of intracellular aluminium ions over an extended time may induce the polarization of macrophages into inflammatory and antigen presenting M1 macrophages by affecting the: endosomal pH; formation of reactive oxygen species (ROS); stability of the phagosomal membrane; release of damage associated molecular patterns (DAMPs); and metabolism (metabolic re-programming). This review emphasizes that a persistent intracellular presence of aluminium ions over an extended time has the potential to affect the functionality of sentinel cells of the innate immune system, inducing polarization and activation. The immune stimulating properties of aluminium adjuvants is presumably mediated by several discrete events, however, a persistent intracellular presence of aluminium ions appears to be a key factor regarding the immune stimulating properties of aluminium based adjuvants.

Place, publisher, year, edition, pages
Elsevier, 2021. Vol. 115, p. 3-9, article id S1084-9521(20)30202-0
Keywords [en]
Aluminium based adjuvant, Immune stimulation, Inflammation, Macrophages, Vaccine
National Category
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)
Identifiers
URN: urn:nbn:se:mau:diva-39076DOI: 10.1016/j.semcdb.2020.12.008ISI: 000665718100002PubMedID: 33423930Scopus ID: 2-s2.0-85099179205OAI: oai:DiVA.org:mau-39076DiVA, id: diva2:1516525
Available from: 2021-01-12 Created: 2021-01-12 Last updated: 2024-02-05Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Danielsson, RaviEriksson, Håkan

Search in DiVA

By author/editor
Danielsson, RaviEriksson, Håkan
By organisation
Department of Biomedical Science (BMV)
In the same journal
Seminars in Cell and Developmental Biology
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 301 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf