Publikationer från Malmö universitet
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Perceived Behaviors of Personality-Driven Agents
Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).ORCID-id: 0000-0002-7738-1601
IT University of Copenhagen.
2019 (Engelska)Ingår i: Violence - Perception - Video Games: New Directions in Game Research / [ed] Federico Alvarez Igarzábal, Michael S. Debus, Curtis L. Maughan, Transcript Verlag, 2019, s. 171-184Kapitel i bok, del av antologi (Refereegranskat)
Ort, förlag, år, upplaga, sidor
Transcript Verlag, 2019. s. 171-184
Serie
Bild und Bit : Studies of digital media culture, ISSN 2702-8240, E-ISSN 2702-8259
Nationell ämneskategori
Människa-datorinteraktion (interaktionsdesign) Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:mau:diva-18277DOI: 10.14361/9783839450512-015Scopus ID: 2-s2.0-85124557944ISBN: 9783839450512 (digital)OAI: oai:DiVA.org:mau-18277DiVA, id: diva2:1469182
Tillgänglig från: 2020-09-21 Skapad: 2020-09-21 Senast uppdaterad: 2023-12-20Bibliografiskt granskad
Ingår i avhandling
1. Exploring the Dynamic Properties of Interaction in Mixed-Initiative Procedural Content Generation
Öppna denna publikation i ny flik eller fönster >>Exploring the Dynamic Properties of Interaction in Mixed-Initiative Procedural Content Generation
2020 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

As AI develops, grows, and expands, the more benefits we can have from it. AI is used in multiple fields to assist humans, such as object recognition, self-driving cars, or design tools. However, AI could be used for more than assisting humans in their tasks. It could be employed to collaborate with humans as colleagues in shared tasks, which is usually described as Mixed-Initiative (MI) paradigm. This paradigm creates an interactive scenario that leverage on AI and human strengths with an alternating and proactive initiative to approach a task. However, this paradigm introduces several challenges. For instance, there must be an understanding between humans and AI, where autonomy and initiative become negotiation tokens. In addition, control and expressiveness need to be taken into account to reach some goals. Moreover, although this paradigm has a broader application, it is especially interesting for creative tasks such as games, which are mainly created in collaboration. Creating games and their content is a hard and complex task, since games are content-intensive, multi-faceted, and interacted by external users. 

Therefore, this thesis explores MI collaboration between human game designers and AI for the co-creation of games, where the AI's role is that of a colleague with the designer. The main hypothesis is that AI can be incorporated in systems as a collaborator, enhancing design tools, fostering human creativity, reducing their workload, and creating adaptive experiences. Furthermore, This collaboration arises several dynamic properties such as control, expressiveness, and initiative, which are all central to this thesis. Quality-Diversity algorithms combined with control mechanisms and interactions for the designer are proposed to investigate this collaboration and properties. Designer and Player modeling is also explored, and several approaches are proposed to create a better workflow, establish adaptive experiences, and enhance the interaction. Through this, it is demonstrated the potential and benefits of these algorithms and models in the MI paradigm.

Ort, förlag, år, upplaga, sidor
Malmö: Malmö universitet, 2020. s. 237
Serie
Studies in Computer Science
Nyckelord
Mixed-Initiative, Procedural Content Generation, Quality Diversity, Computer Games, Evolutionary Algorithms
Nationell ämneskategori
Datavetenskap (datalogi) Människa-datorinteraktion (interaktionsdesign)
Identifikatorer
urn:nbn:se:mau:diva-18358 (URN)10.24834/isbn.9789178771400 (DOI)978-91-7877-139-4 (ISBN)978-91-7877-140-0 (ISBN)
Presentation
2020-11-20, OR:D138, Nordenskiöldsgatan 10, Malmö, 13:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2020-09-28 Skapad: 2020-09-28 Senast uppdaterad: 2024-02-23Bibliografiskt granskad

Open Access i DiVA

alvVoz2019-personalitydriven(284 kB)237 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 284 kBChecksumma SHA-512
ad2da9a5079e69699c1898daf76a06bf97014d9ceb0593c28b899c19e6382caca705b99c125cc589f07707a78bc718154161b2bfac544f41f3222687c29266fb
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Person

Alvarez, Alberto

Sök vidare i DiVA

Av författaren/redaktören
Alvarez, Alberto
Av organisationen
Institutionen för datavetenskap och medieteknik (DVMT)
Människa-datorinteraktion (interaktionsdesign)Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 239 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 348 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf