Malmö University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Cortical and Trabecular Bone Healing Patterns and Quantification for Three Different Dental Implant Systems
Malmö högskola, Faculty of Odontology (OD).
Show others and affiliations
2017 (English)In: International Journal of Oral & Maxillofacial Implants, ISSN 0882-2786, E-ISSN 1942-4434, Vol. 32, no 3, p. 585-592Article in journal (Refereed)
Abstract [en]

Purpose: The present study hypothesized that different bone healing patterns through initial stages of osseointegration would be observed when three distinct commercially available implant systems (Nobel Groovy, Implacil, and Zimmer TSV) were used, leading to significant variations in histometric levels of total bone and new bone formation during the osseointegration process. Materials and Methods: A total of 48 implants were placed bilaterally on the tibias of eight beagle dogs and allowed to heal for 2 and 6 weeks. Following euthanasia, nondecalcified specimens were processed for morphologic and histometric evaluation. Bone-to-implant contact (BIC) and new bone area fraction occupancy (BAFO) analyses for native and new bone were performed along the whole perimeter of each implant and separately for the cortical and trabecular bone regions. Results: Morphologic evaluation of cortical bone presented different healing patterns and osseointegration levels for different implant systems as time elapsed in vivo. Interfacial remodeling was the chief healing pattern in Zimmer implants, while a combination of interfacial remodeling and healing chambers was observed in Nobel and Implacil implants. When trabecular bone was evaluated, similar bone healing patterns were observed between systems despite different levels of osseointegration observed as a function of implantation time, implant system, and native and/or new bone BIC and BAFO. Conclusion: Different implant systems led to different healing patterns during early stages of osseointegration. Such variation in pattern was more noticeable in the cortical regions compared to the trabecular regions. The variation in bone healing pattern did significantly influence overall indicators of native and new BIC and BAFO during the osseointegration process. The postulated hypothesis was accepted.

Place, publisher, year, edition, pages
Quintessence , 2017. Vol. 32, no 3, p. 585-592
Keywords [en]
bone marrow, dental implants, design, histology, osseointegration
National Category
Dentistry
Identifiers
URN: urn:nbn:se:mau:diva-15938DOI: 10.11607/jomi.4856ISI: 000404520600024PubMedID: 27835707Scopus ID: 2-s2.0-85019842367Local ID: 23627OAI: oai:DiVA.org:mau-15938DiVA, id: diva2:1419460
Available from: 2020-03-30 Created: 2020-03-30 Last updated: 2024-02-05Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Jimbo, Ryo

Search in DiVA

By author/editor
Jimbo, Ryo
By organisation
Faculty of Odontology (OD)
In the same journal
International Journal of Oral & Maxillofacial Implants
Dentistry

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 26 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf