Publikationer från Malmö universitet
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
The Evolution of Continuous Experimentation in Software Product Development: From Data to a Data-Driven Organization at Scale
Malmö högskola, Fakulteten för teknik och samhälle (TS).ORCID-id: 0000-0003-4908-2708
Malmö högskola, Fakulteten för teknik och samhälle (TS).ORCID-id: 0000-0002-7700-1816
2017 (Engelska)Ingår i: International Conference on Software Engineering. Proceedings, IEEE, 2017, s. 770-780Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Software development companies are increasingly aiming to become data-driven by trying to continuously experiment with the products used by their customers. Although familiar with the competitive edge that the A/B testing technology delivers, they seldom succeed in evolving and adopting the methodology. In this paper, and based on an exhaustive and collaborative case study research in a large software-intense company with highly developed experimentation culture, we present the evolution process of moving from ad-hoc customer data analysis towards continuous controlled experimentation at scale. Our main contribution is the "Experimentation Evolution Model" in which we detail three phases of evolution: technical, organizational and business evolution. With our contribution, we aim to provide guidance to practitioners on how to develop and scale continuous experimentation in software organizations with the purpose of becoming data-driven at scale.

Ort, förlag, år, upplaga, sidor
IEEE, 2017. s. 770-780
Nyckelord [en]
A/B testing, continuous experimentation, data science, customer feedback, continuous product innovation, Experimentation Evolution Model, Experiment Owner
Nationell ämneskategori
Teknik och teknologier
Identifikatorer
URN: urn:nbn:se:mau:diva-12651DOI: 10.1109/ICSE.2017.76ISI: 000427091300068Scopus ID: 2-s2.0-85027682332Lokalt ID: 24149OAI: oai:DiVA.org:mau-12651DiVA, id: diva2:1409698
Konferens
International Conference on Software Engineering (ICSE), Buenos Aires, Argentina (20-28 May 2017)
Tillgänglig från: 2020-02-29 Skapad: 2020-02-29 Senast uppdaterad: 2024-04-04Bibliografiskt granskad
Ingår i avhandling
1. Data-Driven Software Development at Large Scale: from Ad-Hoc Data Collection to Trustworthy Experimentation
Öppna denna publikation i ny flik eller fönster >>Data-Driven Software Development at Large Scale: from Ad-Hoc Data Collection to Trustworthy Experimentation
2018 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Accurately learning what customers value is critical for the success of every company. Despite the extensive research on identifying customer preferences, only a handful of software companies succeed in becoming truly data-driven at scale. Benefiting from novel approaches such as experimentation in addition to the traditional feedback collection is challenging, yet tremendously impactful when performed correctly. In this thesis, we explore how software companies evolve from data-collectors with ad-hoc benefits, to trustworthy data-driven decision makers at scale. We base our work on a 3.5-year longitudinal multiple-case study research with companies working in both embedded systems domain (e.g. engineering connected vehicles, surveillance systems, etc.) as well as in the online domain (e.g. developing search engines, mobile applications, etc.). The contribution of this thesis is three-fold. First, we present how software companies use data to learn from customers. Second, we show how to adopt and evolve controlled experimentation to become more accurate in learning what customers value. Finally, we provide detailed guidelines that can be used by companies to improve their experimentation capabilities. With our work, we aim to empower software companies to become truly data-driven at scale through trustworthy experimentation. Ultimately this should lead to better software products and services.

Ort, förlag, år, upplaga, sidor
Malmö university, Faculty of Technology and society, 2018. s. 357
Serie
Studies in Computer Science ; 6
Nationell ämneskategori
Teknik och teknologier
Identifikatorer
urn:nbn:se:mau:diva-7768 (URN)10.24834/2043/24873 (DOI)24873 (Lokalt ID)9789171049186 (ISBN)9789171049193 (ISBN)24873 (Arkivnummer)24873 (OAI)
Disputation
2018-06-15, NI:B0E07, Nordenskiöldsgatan 1, 13:00 (Engelska)
Opponent
Anmärkning

In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does not endorse any of Malmö University's products or services. Internal or personal use of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or for creating new collective works for resale or redistribution, please go to http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License from RightsLink.

Tillgänglig från: 2020-02-28 Skapad: 2020-02-28 Senast uppdaterad: 2024-04-04Bibliografiskt granskad

Open Access i DiVA

fulltext(3021 kB)1139 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 3021 kBChecksumma SHA-512
3fbd9b2c38c38f0469dc85262eccf78fa8949a16ce15527782a7652ee2ceecc9456e2aa5cc968fad3c2e45a412b16cd94c883765a2ca8f2486bec8aa6c54d3e0
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopushttp://icse2017.gatech.edu/

Person

Fabijan, AleksanderOlsson Holmström, Helena

Sök vidare i DiVA

Av författaren/redaktören
Fabijan, AleksanderOlsson Holmström, Helena
Av organisationen
Fakulteten för teknik och samhälle (TS)
Teknik och teknologier

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 1139 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 92 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf