Publikationer från Malmö universitet
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Device Orientation Independent Human Activity Recognition Model for Patient Monitoring Based on Triaxial Acceleration
Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP). Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy.ORCID-id: 0000-0002-8461-0089
Department of Patient Care & Monitoring, Philips Research, 5656 AE Eindhoven, The Netherlands;Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands.ORCID-id: 0000-0002-5752-9226
Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy;Istituto Auxologico Italiano, IRCCS, S. Luca Hospital, 20149 Milan, Italy.ORCID-id: 0000-0002-1770-6486
2023 (Engelska)Ingår i: Applied Sciences, E-ISSN 2076-3417, Vol. 13, nr 7, s. 4175-4175Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Tracking a person’s activities is relevant in a variety of contexts, from health and group-specific assessments, such as elderly care, to fitness tracking and human–computer interaction. In a clinical context, sensor-based activity tracking could help monitor patients’ progress or deterioration during their hospitalization time. However, during routine hospital care, devices could face displacements in their position and orientation caused by incorrect device application, patients’ physical peculiarities, or patients’ day-to-day free movement. These aspects can significantly reduce algorithms’ performances. In this work, we investigated how shifts in orientation could impact Human Activity Recognition (HAR) classification. To reach this purpose, we propose an HAR model based on a single three-axis accelerometer that can be located anywhere on the participant’s trunk, capable of recognizing activities from multiple movement patterns, and, thanks to data augmentation, can deal with device displacement. Developed models were trained and validated using acceleration measurements acquired in fifteen participants, and tested on twenty-four participants, of which twenty were from a different study protocol for external validation. The obtained results highlight the impact of changes in device orientation on a HAR algorithm and the potential of simple wearable sensor data augmentation for tackling this challenge. When applying small rotations (<20 degrees), the error of the baseline non-augmented model steeply increased. On the contrary, even when considering rotations ranging from 0 to 180 along the frontal axis, our model reached a f1-score of 0.85±0.110.85±0.11 against a baseline model f1-score equal to 0.49±0.120.49±0.12.

Ort, förlag, år, upplaga, sidor
MDPI, 2023. Vol. 13, nr 7, s. 4175-4175
Nyckelord [en]
device displacement, acceleration, wearable devices, data augmentation, patient monitoring, human activity recognition
Nationell ämneskategori
Övrig annan teknik
Forskningsämne
Hälsa och samhälle
Identifikatorer
URN: urn:nbn:se:mau:diva-60298DOI: 10.3390/app13074175ISI: 000971272200001Scopus ID: 2-s2.0-85152550667OAI: oai:DiVA.org:mau-60298DiVA, id: diva2:1765063
Tillgänglig från: 2023-06-09 Skapad: 2023-06-09 Senast uppdaterad: 2023-06-20Bibliografiskt granskad

Open Access i DiVA

fulltext(11455 kB)126 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 11455 kBChecksumma SHA-512
5dfa0a6c796b334a526c22afe114a45355071dd8580da77aeb9dd6046b85f58e8a981eb4f52869e3826b7f689b0d96414efeb97a3b91c1870696e753270dc26e
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Person

Caramaschi, Sara

Sök vidare i DiVA

Av författaren/redaktören
Caramaschi, SaraPapini, Gabriele B.Caiani, Enrico G.
Av organisationen
Institutionen för datavetenskap och medieteknik (DVMT)Internet of Things and People (IOTAP)
I samma tidskrift
Applied Sciences
Övrig annan teknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 126 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 169 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf