Publikationer från Malmö universitet
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Large-scale machine learning systems in real-world industrial settings: A review of challenges and solutions
Department of Computer Science and Engineering, Chalmers University of Technology, Hörselgången 11, Gothenburg, 412 96, Sweden.
Department of Computer Science and Engineering, Chalmers University of Technology, Hörselgången 11, Gothenburg, 412 96, Sweden.
Department of Computer Science and Engineering, Chalmers University of Technology, Hörselgången 11, Gothenburg, 412 96, Sweden.
Department of Computer Science and Engineering, Chalmers University of Technology, Hörselgången 11, Gothenburg, 412 96, Sweden.
Visa övriga samt affilieringar
2020 (Engelska)Ingår i: Information and Software Technology, ISSN 0950-5849, E-ISSN 1873-6025, Vol. 127, artikel-id 106368Artikel, forskningsöversikt (Refereegranskat) Published
Abstract [en]

Background : Developing and maintaining large scale machine learning (ML) based software systems in an in-dustrial setting is challenging. There are no well-established development guidelines, but the literature contains reports on how companies develop and maintain deployed ML-based software systems. Objective : This study aims to survey the literature related to development and maintenance of large scale ML -based systems in industrial settings in order to provide a synthesis of the challenges that practitioners face. In addition, we identify solutions used to address some of these challenges. Method : A systematic literature review was conducted and we identified 72 papers related to development and maintenance of large scale ML-based software systems in industrial settings. The selected articles were qualita-tively analyzed by extracting challenges and solutions. The challenges and solutions were thematically synthe-sized into four quality attributes: adaptability, scalability, safety and privacy. The analysis was done in relation to ML workflow, i.e. data acquisition, training, evaluation, and deployment. Results : We identified a total of 23 challenges and 8 solutions related to development and maintenance of large scale ML-based software systems in industrial settings including six different domains. Challenges were most often reported in relation to adaptability and scalability. Safety and privacy challenges had the least reported solutions. Conclusion : The development and maintenance on large-scale ML-based systems in industrial settings introduce new challenges specific for ML, and for the known challenges characteristic for these types of systems, require new methods in overcoming the challenges. The identified challenges highlight important concerns in ML system development practice and the lack of solutions point to directions for future research.

Ort, förlag, år, upplaga, sidor
Elsevier, 2020. Vol. 127, artikel-id 106368
Nyckelord [en]
Machine learning systems, Software engineering, Industrial settings, Challenges, Solutions, SLR
Nationell ämneskategori
Programvaruteknik
Identifikatorer
URN: urn:nbn:se:mau:diva-18567DOI: 10.1016/j.infsof.2020.106368ISI: 000571236700012Scopus ID: 2-s2.0-85087690796OAI: oai:DiVA.org:mau-18567DiVA, id: diva2:1474514
Tillgänglig från: 2020-10-08 Skapad: 2020-10-08 Senast uppdaterad: 2024-06-17Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Olsson, Helena Holmström

Sök vidare i DiVA

Av författaren/redaktören
Olsson, Helena Holmström
Av organisationen
Institutionen för datavetenskap och medieteknik (DVMT)
I samma tidskrift
Information and Software Technology
Programvaruteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 410 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf